Menu
Administrative information
  • Zoeken in arrangement
    bèta
  • Colofon
  • Opties
    Gebruik
    • Download als PDF
    • Alle download opties
    • Kopieer arrangement
    Weergave
    • Menu links
    • Geen menu
    • Menu onder voor digibord
  • wikiwijs-logo
    • Over Wikiwijs
    • Wikiwijs Updates
    • Disclaimer
    • Privacy
    • Cookies
    Wikiwijs is een dienst van

Lecture: Generative Models, Transform Deep Learning and Hybrid learning models

Lecture: Generative Models, Transform Deep Learning and Hybrid learning models

Administrative information


Title

Generative Models, Transform Deep Learning and Hybrid learning Models
Duration 45 - 60
Module C
Lesson Type Lecture
Focus Technical - Future AI
Topic Advances in ML models through a HC lens - A result Oriented Study

 

Keywords


Generative Models,Attention Detection,Query-Key-Value,Transform models,Hybrid Models,

 

Learning Goals


  • Understand the class of Generative Models and explore its key features.
  • Explain the concept and design of Transformer Architectures
  • Elaborate the configuration of Hybrid Models

 

Expected Preparation


Learning Events to be Completed Before

  • Lecture: Inference and Prediction
  • Lecture: Decision Trees
  • Lecture: Neural Networks
  • Lecture: Fundamentals of deep learning
  • Lecture: Convolutional Neural Networks
  • Lecture: Transformer networks
  • Lecture: Introduction General Explainable AI

Obligatory for Students

  • Introduction to machine learning and deep learning concepts given in previous lectures

Optional for Students

  • Attention is all you need

References and background for students

  • Generative models
  • Transformer model
  • What is attention?
  • Transformer attention mechanism
  • Hybrid Machine Learning Approaches: A Method to Improve Expected Output of Semi-structured Sequential Data
  • Using Hybrid Machine Learning Models
  • MLxtend

Recommended for Teachers

None.

 

Lesson materials


  • Lecture Slides

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


In this lecture, our primary objectives are threefold. Firstly, we aim to comprehensively understanding of Generative Models, focusing on their underlying mechanisms and core features. Secondly, we will discuss the significance of Transformer Architectures, particularly in the context of Natural Language Processing (NLP). Lastly, the lecture will elaborate on the various configuration of Hybrid Models, emphasizing the fusion of diverse elements to enhance machine learning performance.

 

Outline


 

Duration Description Concepts
15 min Introduction to Generative Models, Classification of Generative Models What are generative models?, Why are they important? What can they be used for? Classification, Key features, Examples
20 min Introduction to the Transformer architectures Transformer architecture, state-of-the-art transformers such as BERT and GTP
10 min Introduction to Hybrid learning What is hybrid learning?, Why is it important?, What can they be used for?
5 min Conclusion, questions and answers Summary

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Generative Models, Transform Deep Learning and Hybrid learning models is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Auteur
HCAIM Consortium
Laatst gewijzigd
2024-02-14 22:33:20
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
copy this template and fill in
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Generalizability and Artificial General Intelligence (AGI)

https://maken.wikiwijs.nl/202195/Lecture__Generalizability_and_Artificial_General_Intelligence__AGI_

Lecture: Generative Models, Transform Deep Learning and Hybrid learning models
nl
HCAIM Consortium
2024-02-14 22:33:20
copy this template and fill in
leerling/student
PT4H

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

  • pdf
  • json
  • IMSCP package

Metadata

  • Metadata overzicht (Excel)

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

  • IMSCC package

Voor developers

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

Sluiten