Lecture: Inference and Prediction

Lecture: Inference and Prediction

Administrative information


Title Inference and Prediction
Duration 60
Module A
Lesson Type Lecture
Focus Technical - Foundations of AI
Topic Foundations of AI

 

Keywords


Bayesian inference, maximum likelihood, maximum a posteriori, Bayesian model averaging.,

 

Learning Goals


  • Learners understand the basic idea of Bayesian thinking,
  • Learners are familiar with ML and MAP inference with various distributions,
  • Learners understand the algorithmic aspects of ML/MAP inference and prediction,
  • Learners understand the idea of Bayesian model averaging and probabilistic predictions.

 

Expected Preparation


Learning Events to be Completed Before

None.

Obligatory for Students

  • Review of basic probability theory.

Optional for Students

None.

References and background for students:

  • Bishop, Christopher M. (2006). Pattern recognition and machine learning, Chapter 1 and 2. For a brief review of probability theory, see Section 1.2.

Recommended for Teachers

  • Familiarize themselves with the demonstration materials.

Lesson Materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


Cover the topics in the lesson outline and demonstrate the concepts using the interactive notebooks (likelihood maximization/loss minimization, relationship between the prior, posterior and the number of observations). Give a brief overview of the code.

Outline/time schedule


Duration (min) Description Concepts
10 Bayesian treatment of a coin toss observation, parameter, Bernoulli distribution
10 Inference via maximum likelihood likelihood, loss function, crossentropy
10 Demonstration (likelihood maximization) -
15 Probabilistic inference via Bayes' theorem prior, posterior, Beta distribution, hyperparameters, maximum a posteriori
5 Demonstration (prior and posterior) -
10 Predictive distribution and model averaging predictive distribution, Bayesian model averaging

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Inference and Prediction is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:01:05
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Duty Ethics

https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open