Lecture: Generalizability and Artificial General Intelligence (AGI)

Lecture: Generalizability and Artificial General Intelligence (AGI)

Administrative information


Title

Generalizability and Artificial General Intelligence (AGI)
Duration 45 - 60
Module C
Lesson Type Lecture
Focus Technical - Future AI
Topic Open Problems and Challenges

 

Keywords


AGI,Generalizability,LLMs,Transformers,

 

Learning Goals


  • Limitations of currrent AI approaches
  • Definition of Artificial General Intelligence (AGI)
  • Capabilities & core requirements of AGI
  • How can we test for AGI
  • How far away is AGI and what are the benefits and risks

 

Lesson materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

Instructions for Teachers


The goal of this lecture is to provide students with an introduction to the idea of Artificial General Intelligence (AGI). It should set the stage for more in-depth discussions and debates about AGI. The lecture should:

  • Clarify the differences between the levels of AI
  • Discuss the expected characteristics of AGI
  • Outline the limitations of the current state-of-the-art AI in terms of the characterists of AGI
  • Present possible ways in which we might test for AGI
  • Look at various expert viewpoints on how far away AGI is
  • Discuss the possible benefits and risks of AGI in terms of Human Centered AI

 

Outline


Duration Description Concepts Activity Material
10 min Limitation of current AI approaches Reliance on data and teaching (learning from limited data), Human scale nerual networks, offline learning versus continuous learning and adaptation of beliefs, integration into a complete AI stack Taught session and examples Lecture materials
5 min Definition of Artificial General Intelligence (AGI) How can we define AGI, levels of AI (weak, strong, super) Taught session and examples Lecture materials
10 min Capabilities and core requirements of AGI Sensory perception, motor skills, natural language understanding, knowledge retention, problem solving, common sense, creativity, consciousness, pattern recognition versus modeling the world Taught session and examples Lecture materials
5 min How can we test for AGI? AGI Turing test, Coffee test, Robot college student, Employment test Taught session and examples Lecture materials
5 min How far away is AGI and what are the benefits and risks? Metrics (time, speed of technological advancement, singularity breakthrough), Expert views and predictions, Possible outcomes and ethical concerns (Utopia, Status Quo, Distopia) Taught session and examples Lecture materials
5 min Conclusion, questions and answers Summary Conclusions Lecture materials

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Generalizability and Artificial General Intelligence (AGI) is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-02-14 22:21:52
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
copy this template and fill in
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Federated Learning - Advances and Open Challenges

https://maken.wikiwijs.nl/202194/Lecture__Federated_Learning___Advances_and_Open_Challenges

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open