1H02 Vlakke figuren

H02 Vlakke figuren

Inleiding

2H01 Inleiding ......................................................................................................

Op de tv zijn tegenwoordig veel programma’s te zien die gaan over het veranderen of opnieuw inrichten van woningen. Voordat er aan zo’n klus wordt begonnen zijn er eerst voorbereidingen getroffen om tot een mooi eindresultaat te komen. Maten van de kamers worden opgenomen, materialen worden uitgezocht en er worden verschillende ontwerpen gemaakt. Daarna wordt er bepaald hoeveel rollen behang, hoeveel blikken muurverf, hoeveel meter vloerbedekking of hoeveel pakketten laminaat er moeten worden gekocht.

Om een metamorfose te kunnen maken moet je eerst iets weten over maten en meten en hoe je een oppervlakte kunt bepalen. Dat ga je in dit thema leren.

Leerdoelen

2H01 Leerdoelen ..........................................................................................................

Aan het eind van dit thema:

  • weet je wat het verschil tussen een lijn, een halve lijn en een lijnstuk is;
  • weet je wat wordt bedoeld met loodrecht en met evenwijdig;
  • weet je wat we in de wiskunde bedoelen met de afstand;
  • ken je de begrippen cirkel, straal en middellijn;
  • ken je de bekendste vlakke figuren;
  • weet je wat wordt bedoeld met de omtrek van een vlakke figuur;
  • kun je lengtematen omrekenen;
  • weet je wat wordt bedoeld met de oppervlakte van een vlakke figuur;
  • kun je oppervlaktematen omrekenen.

 

Werkbladen

2H01 Werkbladen ............................................................................................................

Bij het maken van sommige opgaven heb je werkbladen nodig.

Je krijgt die van je docent maar kunt ze hier ook zelf downloaden en afdrukken.

Paragrafen

§1 Lijnen

1H02 paragraaflink Lijn, lijnstuk, halve lijn en punt ....................................................................................

De eerste paragraaf in dit thema heet 'Lijn, lijnstuk, halve lijn en punt'.
Je leert wat het verschil is tussen een lijn en een lijnstuk en hoe je een punt moet aangeven.

Klik op de link om de paragraaf te openen:

 

§2 Afstanden

1H02 paragraaflink afstanden ..................................................................................................

De tweede paragraaf heet Afstanden. Je leert hoe je de afstand tussen twee punten, tussen een punt en een lijn en tussen twee lijnen bepaalt.

Klik op de link om de paragraaf te openen:


 

§3 Vlakke figuren

1H02 paragraaflink vlakke figuren ..................................................................................

Paragraaf 3 heet 'Vlakke figuren'. Je leert de bekendste vlakke figuren (her-)kennen.

Klik op de link om de paragraaf te openen:

 

§4 Omtrek & oppervlakte

1H02 paragraaflink omtrek ........................................................................................

In deze paragraaf staat de omtrek en oppervlakte van een figuur centraal. Je leert hoe je de omtrek van een figuur kunt uitrekenen als je de lengte van de zijden weet.

Klik op de link om de paragraaf te openen:


 

§5 Het metriekstelsel

1H02 paragraaflink lengtematen .....................................................................................

Paragraaf 5 gaat over het metriekstelsel.

Klik op de link om de paragraaf te openen:


Het metriekstelsel

§6 Gemengde opgaven

De zesde paragraaf heeft gemengde opgaven.logo
Je herhaalt alles wat je geleerde hebt in hoofdstuk 2 nog een keertje.
Deze keer staan de opdrachten niet netjes per onderwerp gesorteerd maar staan de onderwerpen en opdrachten door elkaar heen.

Op deze manier kun je goed oefenen voor je komende wiskunde toets.

 

D-toets

D-toets

1H01 Diagnostische toets ............................................................................................

Eindtoets Meetkunde
Je sluit het thema Meetkunde af met de eindtoets.

Succes!

Toets:Meetkunde

Herhaling

Uitleg & opgaven

Antwoorden

Alle uitleg bij elkaar

Lijn, lijnstuk, halve lijn, punt

Met een lijn bedoelen we altijd een rechte lijn.
Een lijn heeft geen beginpunt en geen eindpunt.
In een tekening mag je een lijn ook altijd naar één of beide kanten langer maken.
De naam van een lijn is een kleine letter, bijvoorbeeld: lijn m

Een lijnstuk heeft een beginpunt en een eindpunt.



De naam van een punt is altijd een HOOFDletter.

Een halve lijn heeft één eindpunt.

Als twee lijnen elkaar snijden geven we het snijpunt meestal ook een naam, bijvoorbeeld: S

Lijnen die elkaar niet snijden (ook niet als je ze langer maakt) zijn evenwijdig.

 

Lijnen die elkaar snijden met een rechte hoek staan loodrecht op elkaar.


In een tekening geef je dat aan met een rechte hoek teken.
 

Lijnen teken je met een potlood en liniaal of geodriehoek.

Om lijnen evenwijdig of loodrecht te tekenen gebruik je altijd je geodriehoek.

 

Soms mag je ook schetsen. Een schets is een soort kladje en mag zonder liniaal of geodriehoek worden gemaakt.
Een schets is een hulpmiddel om snel een plaatje te krijgen bij een situatie.

 

Afstanden

Een afstand in de wiskunde is altijd de lengte van de kortste verbinding.

De afstand tussen de twee punten A en B is de lengte van het lijnstuk AB tussen die punten.

 

 

De afstand van punt C tot lijn n is de lengte van lijnstuk CS.

 

 

De afstand tussen de lijnen p en q is de lengte van lijnstuk DE.

 

 

In werkelijkheid of op een plattegrond is de route tussen twee punten (meestal) langer dan de rechte afstand.

Bijvoorbeeld:
Hiernaast zie je twee keer een plattegrond. 
Eva staat in de Dijkmeesterweg (punt A) 
Ze wil naar de Schoolstraat (punt B). 


De afstand van punt A naar B is de lengte van lijnstuk AB. 
Eva kan niet in een rechte lijn van A naar B lopen.

 
De
route die Eva loopt zie je aangegeven in de plattegrond. 
De lengte van die route is langer dan de afstand AB.

 

 

Voorbeeld 2:

De route naar Harfsen is 3 kilometer. 
De afstand
hemelsbreed zal minder zijn dan 3 kilometer.

Cirkel

 
Je ziet hier een cirkel met middelpunt M. 
  


De straal is een lijnstuk vanuit het middelpunt naar de cirkel, bijvoorbeeld MA. 


 
 
 

 


 
 
Lijnstuk AB deelt de cirkel in twee gelijke delen.  
Lijnstuk AB heet de middellijn van de cirkel. 
De middellijn is twee keer zo lang als de straal. 
 
Een cirkel kun je tekenen met een passer. 

Vlakke figuren

Hiernaast zie je de bekendste vlakke figuren.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Driehoek
Een driehoek is heeft drie hoekpunten en drie zijden.  
Hier zie je driehoek ABC. Je schrijft ook wel: Δ ABC.
 
 
 
 


Vierkant
Hiernaast zie je twee keer vierkant ABCD.
De zijden van een vierkant staan loodrecht op elkaar.
Alle zijden zijn even lang.
De zijden tegenover elkaar zijn evenwijdig

De twee diagonalen van een vierkant zijn even lang.
De twee diagonalen staan loodrecht op elkaar.
De twee diagonalen delen elkaar middendoor.
 
 
 
 
Rechthoek
Hier zie je twee keer rechthoek ABCD.
 
 

De zijden van een rechthoek staan loodrecht op elkaar.
De zijden die tegenover elkaar liggen zijn even lang.
De zijden tegenover elkaar zijn evenwijdig
De twee diagonalen van een rechthoek zijn even lang.
De twee diagonalen delen elkaar middendoor.
 
 
 
Parallellogram
Hier zie je twee keer parallellogram ABCD.
De zijden die tegenover elkaar liggen lopen evenwijdig.
De zijden die tegenover elkaar liggen
zijn even lang.
 
De twee diagonalen van een parallellogram delen elkaar middendoor.
 
 
Ruit
Hier zie je twee keer ruit ABCD.
De vier zijden van een ruit zijn even lang.
De zijden die tegenover elkaar liggen lopen evenwijdig.

De twee diagonalen van een ruit staan loodrecht op elkaar.
De twee diagonalen delen elkaar middendoor.
 
 
Vlieger
Hier zie je twee keer vlieger ABCD.
Zijde AB is even lang als zijde BC.
Zijde CD is even lang als zijde AD.
De twee diagonalen van een vlieger staan loodrecht op elkaar.
 
 
Trapezium
Hier zie je twee keer trapezium ABCD
In een trapezium zijn twee zijden evenwijdig.
in dit trapezium is AB evenwijdig aan CD
 
 
 
 
Vlakvulling
Bij deze vlakvulling wordt vaak gebruik gemaakt  van vlakke figuren.
Deze vlakvulling bestaat uit allemaal ruiten.

Omtrek

De omtrek van een figuur is lengte van de buitenrand. 
Je bepaalt de omtrek door de figuur ‘om te trekken’.  
Je telt welke afstand je aflegt tot je weer bij het beginpunt uitkomt.  
De omtrek van deze figuur is: 
AB + BC + CD + DA = 
3  +  4  +  5  +  2  = 14

 

 

 

 

In een rooster kun je de lengte van sommige lijnstukken tellen. 
Soms ligt een lijnstuk niet op een roosterlijn.  
Je meet dan de lengte met een liniaal. 
De lengte van ‘kromme’  gedeelten moet je schatten. 
De omtrek van deze figuur is: 
AB + BC + CD + DA ≈ 
4  +  5  + 6,1 +  6  = 21,1  

 

 

 

Voorbeeld 1

Een boer heeft een rechthoekig stuk land van 150 m bij 300 m. 
Hij wil land afzetten met prikkeldraad. 
Hoeveel meter prikkeldraad heeft hij nodig als hij op drie hoogtes prikkeldraad  
wil spannen? 
 
 1 hokje = 100 m bij 100 m 
 
De omtrek van het stuk land is 150 + 300 + 150 + 300 = 900 m. 
Hij heeft dus 3 x 900 m = 2700 m. prikkeldraad nodig. 

 

Voorbeeld 2

Je ziet hier vier vlakke figuren:  
een vierkant, een rechthoek, een ruit en een vlieger. 

De figuren hebben allemaal dezelfde omtrek. 

 

Lengtematen

Heb je het over lengte dan heb je het vaak over meters (m).
Maar ook over kilometers (km), decimeters (dm), centimeters (cm) of millimeters (mm).
Kilometers, meters, decimeters, centimeters en millimeters zijn lengtematen.
Voor deze lengtematen geldt:
1 km    =  1000 m
1 m      =  10 dm
1 dm    =  10 cm
1 cm    =  10 mm

Hieronder staan de verschillende lengte-eenheden op volgorde van groot naar klein.  

Zorg dat je dit rijtje uit je hoofd kent!

Elk stapje naar rechts betekent ­   × 10 OF:   de komma één plaats opschuiven naar rechts
Elk stapje naar links betekent      ­ ­ ­ ­ : 10 OF:   de komma één plaats opschuiven naar links

 

 

 

Soms is het handig om lengtematen om te rekenen.
Voorbeelden:
3,5 km = 3500 m       6000 m = 6 km
1,5 m  =   15 dm       35 dm = 3,5 m
6 m    =  600 cm      850 cm = 8,5 m
24 cm  =  240 mm      500 mm = 50 cm
 

 

Voorbeeld  

Een slak legt in één uur 275 cm af.
Hoe lang doet hij over een afstand van 33 m?
33 m = 33 x 100 cm = 3300 cm
3300 : 275 = 12
De slak doet dus 12 uur over een afstand van 33 m.

 

Oppervlakte

Zeshoek ABCDEF is getekend op een rooster. 
De oppervlakte vind je door het aantal hokjes te tellen. 
De oppervlakte van ABCDEF is 7 hokjes. 

 

 

 

 

 
Soms bestaat een figuur uit hele hokjes en halve hokjes. 
Twee halve hokjes hebben dezelfde oppervlakte als één heel hokje. 
De oppervlakte van de figuur hiernaast is 7 hokjes. 
 
 

 

 


Je ziet rechthoek ABCD getekend. 
De oppervlakte van rechthoek ABCD is 8 hokjes. 

 

 

 

 

 

Je ziet driehoek PQR getekend. 
De oppervlakte van PQR is de helft van de oppervlakte van ABCD. 
De oppervlakte is 8 : 2 = 4 hokjes 

 

 

Voorbeeld 1 
 
Bekijk de figuur. De figuur is 5 delen verdeeld. 
De oppervlakte van ABCDEF is gelijk aan de oppervlakte van de vijf delen.  
 
  de oppervlakte van I is: 18  hokjes 
  de oppervlakte van II is: 6 hokjes 
  de oppervlakte van III is: 4 hokjes 
  de oppervlakte van IV is: 2 hokjes 
  de oppervlakte van V is: 0,5 hokjes 
 
De totale oppervlakte van vijfhoek ABCDEF is dus:  
18 + 6 + 4 + 2 + 0,5 = 30,5 hokjes. 

 

 


Voorbeeld 2 
 
Joost wil een muur in zijn kamer verven. 
Hij koopt een pot verf van 3 liter. 
Met één liter verf kun je 4 m² verven. 
Is de pot groot genoeg voor het verven van de muur?  
 
  de oppervlakte van de hele wand is 5 x 3 = 15 m²  
  de oppervlakte van de deur = 1 x 2 = 2 m² 
  de oppervlakte van het raam = 1,5 x 1 = 1,5 m² 
  er moet geverfd worden: 15 - 2 - 1,5 = 11,5 m². 
 
Met 3 liter kun je 3 x 4 = 12 m² verven, dus de pot is net groot genoeg. 

Oppervlaktematen

Heb je het over oppervlakte dan heb je het vaak over vierkante meters (m²).
Een vierkant van 1m bij 1m heeft een oppervlakte van 1 m².
Maar soms heb je het ook over vierkante kilometers (km²), vierkante centimeters (cm²)
of vierkante millimeters (mm²) .
Vierkante meters, vierkante kilometers, vierkante centimeters en vierkante millimeters
zijn oppervlaktematen.
Er geldt:
1 km = 1000 m    en  1 km² = 1000000 m²
1 m  =  100 cm   en  1 m²  =   10000 cm²        
1 cm =   10 mm   en  1 cm² =     100 mm²


Hieronder staan de verschillende oppervlakte-eenheden op volgorde van groot  
naar klein.  

Zorg dat je dit rijtje uit je hoofd kent!

Elk stapje naar rechts betekent ­   × 100 OF:   de komma twee plaatsen opschuiven naar rechts
Elk stapje naar links betekent      ­ ­ ­ ­ : 100 OF:   de komma twee plaatsen opschuiven naar links




Soms is het handig om oppervlaktematen om te rekenen.
Voorbeelden:
  0,5 km² = 500000 m²       6000000  m² =  6 km²
  1,5 m² =  15000 cm²          350 dm² =  3,5 m²
  24 cm² =   2400 mm²        85000 cm² =  8,5 m²

 

Voorbeeld 1

Hiernaast zie je een stukje millimeterpapier.
Ieder grijs hokje is 1 millimeter bij 1 millimeter.
De oppervlakte van 1 grijs hokje is dus 1 mm².
Op het millimeterpapier zijn ook blauwe hokjes getekend.
De blauwe hokjes zijn 1 centimeter bij 1 centimeter.
De oppervlakte van 1 blauw hokje is dus 1 cm².

Tel hoeveel grijze hokjes in één blauw hokje passen.
Je ziet: 1 cm² = 100 mm²

 

 

Voorbeeld 2

Hiernaast zie je een handbalveld getekend.
De oppervlakte van het handbalveld is 50 hokjes.

Elk hokje is in werkelijkheid 5 m bij 5 m.
De oppervlakte van één hokje is dan 25 m².  

De oppervlakte van het handveld is dan 50 x 25 = 1250 m².

 

 

Voorbeeld 3

Irma wil de vloer van haar kamer met vloertegels beleggen.
De oppervlakte van de kamer van Irma is 10 m².
De tegels zijn 30 cm bij 30 cm.
Heeft Irma genoeg aan 100 tegels?

  • De oppervlakte van één tegel is 30 x 30
    = 900 cm²
  • De oppervlakte van 100 tegels = 100 x 900 cm²
    = 90000 cm².
  • 90000 cm² = 9 m².


  Dus Irma heeft niet genoeg aan 100 tegels.

 

 

 

 

  • Het arrangement 1H02 Vlakke figuren is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2020-07-02 10:40:25
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    Openingspagina van waaruit alle koppelingen gemaakt worden
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    Giessen, D.. (z.d.).

    1KGT H02 Vlakke figuren

    https://maken.wikiwijs.nl/149395/1KGT_H02_Vlakke_figuren

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    Oefeningen en toetsen

    Meetkunde

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    QTI

    Oefeningen en toetsen van dit arrangement kun je ook downloaden als QTI. Dit bestaat uit een ZIP bestand dat alle informatie bevat over de specifieke oefening of toets; volgorde van de vragen, afbeeldingen, te behalen punten, etc. Omgevingen met een QTI player kunnen QTI afspelen.

    Versie 2.1 (NL)

    Versie 3.0 bèta

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.