Elektrostatica: ontwikkeling van lading en veld begrip

Elektrostatica: ontwikkeling van lading en veld begrip

Elektrostatica: ontwikkeling van lading en veld begrip

Demonstratiepracticum Sticky tape

Elektrische velden

Algemene beschrijving

Omschrijving

Tot eind 19e eeuw werden atomen beschouwd als ondeelbare, neutrale bollen. Experimenten van o.a. Thomson en Rutherford toonden aan dat een atoom twee typen lading bevat. Het sticky tape practicum kan ook gebruikt worden om aan te tonen dat een atoom positieve en negatieve ladingen bevat. Het laat afstoting en aantrekking van geladen en ongeladen voorwerpen in de klas zien. Leerlingen bouwen uiteindelijk zelf een model van de structuur van een atoom dat de fenomenen, die bij deze demo te zien zijn, verklaart.

Leerdoelen inhoud

  • Leerlingen ontdekken dat objecten een bepaalde eigenschap kunnen bezitten die resulteert in een kracht (anders dan de zwaartekracht) die wordt uitgeoefend zonder contact tussen de objecten
  • Leerlingen leren dat deze kracht zich kan openbaren als aantrekking of afstoting
  • Leerlingen ontdekken dat het effect van aantrekking en afstoting sterk afhankelijk is van de afstand tussen de objecten
  • Leerlingen ontwikkelen een intuïtief begrip van de wet van behoud van lading
  • Leerlingen leren over de structuur van een atoom waarin de lading een eigenschap is van microscopisch kleine deeltjes.
  • Leerlingen leren dat ongelijke ladingen elkaar aantrekken (dus niet alleen dat positieve en negatieve lading elkaar aantrekken, maar ook dat positief/negatief en neutraal geladen voorwerpen elkaar aantrekken).

Leerdoelen vaardigheden

  • Leerlingen documenteren observaties en conclusies in de vorm van tekst en schetsen op het whiteboard.
  • Leerlingen oefenen fysisch redeneren met tekst, schetsen en krachtendiagrammen.

Voorkennis

  • Bouw van een atoom met protonen, neutronen en elektronen.
  • - en – lading stoot elkaar af, + en + lading stoot elkaar af, - en + lading trekt elkaar aan.

Benodigdheden

  • Scotch Magic TapeTM (ondoorzichtig plakband), niet alle soorten plakband zijn geschikt
  • Twee strips aluminiumfolie
  • Twee strips krantenpapier
  • Ballon
  • Pvc-staaf
  • Stuk bont
  • Staaf van plexiglas
  • Een stuk plastic

 

Klassikale introductie van de demo

  • De docent voert de demo uit volgens de hieronder beschreven werkwijze. Deze uitvoering wordt ondersteund met een powerpoint presentatie waar afbeeldingen en opdrachten in staan. Omdat de klassikale uitvoering niet voor alle leerlingen goed zichtbaar zal zijn, zijn deze afbeeldingen noodzakelijk.
  • Leerlingen noteren verwachtingen, observaties en verklaringen op het whiteboard.
  • De observaties bevatten zowel een geschreven tekst als een serie schetsen van de tapes met gelabelde krachtvectoren.

Uitvoering

Deel I – Toptapes

Neem een stuk Scotch Magic TapeTM van 10-15 cm lang en plak deze op tafel (dit is de basistape).

Pak een tweede stuk tape dat iets langer is dan het eerste stuk tape. Maak een handgreep door de eerste cm plakband om te vouwen (plakkende zijden tegen elkaar). Plak dit stuk tape op de basistape (dus de plakkerige kant van het tweede stuk tape op de gladde kant van de basistape). Label deze tape “T” (toptape). Zie figuur 1.

Herhaal stap 1 en 2 zodat je twee sets basis- en toptapes hebt.

Trek snel de eerste van de T-tapes van de basistape en plak de T-tape aan de rand van een tafel.

Trek snel de tweede van de T-tapes van de basistape en breng deze T-tape langzaam in de buurt van de hangende T-tape (voor leerlingen achterin is het beter zichtbaar als je de eerste T-tape niet aan de rand van de tafel hangt, maar de uitvoering doet met in beide handen één T-tape tegen een donkere achtergrond). Laat leerlingen beschrijven wat ze zien. Laat ze op hun whiteboard linksboven een schets maken een zijaanzicht van twee tapes die elkaar naderen. Ze tekenen vectoren om de krachten op de tapes weer te geven. Ze benoemen de krachten. Laat leerlingen rechtsboven op hun whiteboard een schets maken van twee tapes die elkaar naderen maar waarbij de afstand ertussen gehalveerd wordt (vergeleken met de eerste schets). Ze tekenen en benoemen de krachtvectoren.

Figuur 1

Deel 2 – Top- en Bottomtapes

Herhaal stap 1 t/m 3 van deel 1. Label de tapes nog niet.

Plaats nog een 10-15 cm lang stuk tape met handgreep bovenop elk van de tapesets. Je hebt nu twee sets met elk drie lagen tape. Label de bovenste tape “T” (top) en de middelste tape “B” (bottom), zie figuur 2.

Figuur 2

Knip twee stukjes aluminiumfolie uit, met dezelfde afmeting als de tapes, en hang er één aan de rand van een tafel (rechts). Label het hangende aluminiumfolie “F”. Benader de hangende folie met het andere stuk folie. Laat leerlingen klassikaal beschrijven wat ze zien.  

Knip twee stukjes krantenpapier uit, met dezelfde afmeting als de tapes, en hang er één 15 cm links van het folie aan de rand van een tafel. Label het hangende krantenpapier “P”. Benader het hangende papier met het andere stuk papier. Laat leerlingen klassikaal beschrijven wat ze zien.  

Trek langzaam één set T- en B-tapes (hou de T- en B-tapes bij elkaar) van de basistape (langzaam want we willen nog geen lading op beide strips hebben). Strijk rustig met je vinger over de niet plakkerige kant om eventuele lading te verwijderen. Trek daarna de B- en T-tapes snel uit elkaar. Plak beide strips aan de rand van de tafel, naast het aluminiumfolie en krantenpapier, met minimaal 15 cm ertussen. Zie figuur 3.

Trek langzaam de volgende set T- en B-tapes (hou de T- en B-tapes bij elkaar) van de basistape. Strijk rustig met je vinger over de niet plakkerige kant. Trek daarna de B- en T-tapes snel uit elkaar.

Met de losgetrokken T-tape experimenteer je door elk van de vier stroken die op tafel hangt te naderen (toptape (T), bottomtape (B), krantenpapier (P) en aluminiumfolie (F). Ook hier zou je er voor kunnen kiezen om, voor een donkere achtergrond, in elke hand één strook te houden zodat de uitvoering beter zichtbaar is voor de leerlingen achterin. Laat leerlingen hun whiteboard wissen en het bord in vieren delen. Leerlingen beschrijven wat ze zien door schetsen toe te voegen van de tapes terwijl ze elkaar naderen. Ze tekenen en benoemen de krachten. Linksboven op whiteboard: T-tape nadert T-tape; rechtsboven: T-tape nadert B-tape; linksonder: T-tape nadert P-tape; rechtsonder: T-tape nadert F-tape.

Experimenteer nu alleen met de losgetrokken B- en T-tape én de B- en T-tape die aan tafel hangen. Laat leerlingen hun whiteboard wissen en het bord in vieren delen. Leerlingen beschrijven wat ze zien door schetsen toe te voegen van de tapes terwijl ze elkaar naderen. Ze tekenen en benoemen de krachten. Linksboven op whiteboard: T-tape nadert T-tape; rechtsboven: T-tape nadert B-tape; linksonder: B-tape nadert B-tape.

Deel 3 – PVC en plexiglas

Ons huidig model van het atoom komt overeen met het bestaan van twee soorten lading. Een atoom heeft een positief geladen kern omgeven door, mobiele, negatief geladen elektronen. Materialen worden opgeladen door de toename of afname van het aantal mobiele elektronen. Op basis van waarnemingen die je later zal zien, kennen we het label ‘negatief’ toe aan een PVC-staaf wanneer deze met bont wordt gewreven en positief aan een staaf van plexiglas als deze met plastic wordt gewreven.

  1. Wrijf de PVC-staaf met bont en nader elk van de vier hangende tapes. Laat leerlingen klassikaal beschrijven wat ze zien. Let op de kracht van de interacties.
  2. Wrijf de staaf van plexiglas met plastic en nader elk van de vier hangende tapes.Laat leerlingen klassikaal beschrijven wat ze zien. Let op de kracht van de interacties.
  3. Op basis van de observaties van het gebruik van de twee staven kunnen de T- en B-tapes worden gelabeld met een + of een -. Laat leerlingen de interactie tussen de T- en B-tapes, T- en T-tapes en B- en B-tapes herformuleren door de termen positief en negatief te gebruiken in plaats van ‘top’ en ‘bottom’.

Korte klassikale aanwijzingen

  • Wanneer leerlingen aantrekkende krachten tekenen, hebben ze soms de neiging om de krachten heel klein te tekenen waardoor deze niet goed zichtbaar zijn. Ze kunnen het aangrijpingspunt verplaatsen of de krachten laten overlappen.
  • Leerlingen tekenen soms alle krachten die werken op de tapes (zwaartekracht, normaalkracht, elektrische kracht…). Zeg ze vlak voor de bespreking alleen de krachten over te laten die werken tussen de tapes.

Klassikale nabespreking

Deel I – Toptapes

  • Leerlingen starten met het idee dat materie uit deeltjes bestaat.
  • In de demo van deel 1 is te zien dat twee, snel van elkaar afgetrokken, tapes ‘naar elkaar toegaan’. Deze uitkomst kunnen we begrijpen als we uitgaan van het idee dat er positieve en negatieve deeltjes zijn.
  • De docent kiest de groepjes uit die ‘voor het bord’ komen. Kies twee groepjes met verschillen in richting van krachten, grootte van krachten, namen van krachten.

Deel 2 – Top- en bottomtapes

  • Leerlingen hebben in deel 1 gezien dat er positieve en negatieve deeltjes bestaan. Met de demo’s van deel 2 kunnen ze het deeltjesmodel uitbreiden.
  • In de demo van deel 2 is te zien dat een geladen object (tape) en een neutraal geladen object (aluminiumfolie, geleider) elkaar aantrekken. Deze uitkomst kunnen we begrijpen als we uitgaan van het idee dat geladen deeltjes in een geleider kunnen bewegen. De deeltjes met dezelfde lading als de tape bevinden zich dan aan de kant van het aluminiumfolie dat zich ver bij de tape vandaan bevindt.
  • In de demo van deel 2 is ook te zien dat de aantrekkingskracht tussen een geladen object (tape) en een neutraal geladen stukje papier (isolator) minder groot is. Deze uitkomst kunnen we begrijpen als we uitgaan van een model waarbij de geladen deeltjes in de isolator zich minder makkelijk door het materiaal kunnen verspreiden (vergeleken met het aluminium).

 

  • De docent kiest de groepjes uit die ‘voor het bord’ komen. Kies twee groepjes met verschillen in richting van krachten, grootte van krachten, namen van krachten.
  • Bespreek met de leerlingen of de aantrekkende kracht tussen T- en B- tape net zo groot is als de afstotende kracht tussen de T- en T-tape. Waar hangt dit van af?

 

Deel 3 – PVC en plexiglas

  • Leerlingen hebben in deel 1 gezien dat er positieve en negatieve deeltjes bestaan. In deel 2 hebben ze gezien dat negatieve deeltjes zich door een materiaal kunnen verplaatsen.
  • Uit de demo van deel 3 volgt dat de T-tape een + lading krijgt en de B-tape een – lading. Met deze uitkomst kunnen we de verklaring van deel 2 uitbreiden.
  • Als de positief geladen tape naar het aluminiumfolie wordt gebracht, beweegt de negatieve lading (de elektronen) naar de kant van het aluminiumfolie dat zich het dichtst bij de tape bevindt. Die kant wordt dus negatief geladen. We zeggen dat de positief geladen T-tape het aluminiumfolie heeft gepolariseerd omdat de elektronen niet meer evenredig zijn verdeeld. Er is een aantrekking omdat de aantrekkingskracht tussen het positief geladen tape en de negatieve kant van de folie sterker is (omdat de afstand ertussen kleiner is) dan de afstotende kracht tussen de het folie en de positief geladen kant van het folie.
  • In een isolator is het effect van polarisatie minder uitgesproken omdat de buitenste elektronen niet zo vrij kunnen bewegen. Het zou nuttiger zijn om het atoom voor te stellen als een elektronenwolk met een positieve kern in het midden. De positief geladen T-tape kan een verschuiving in de elektronenwolken veroorzaken zodat deze niet langer symmetrisch rond de kernen zijn gerangschikt. De elektronenwolk is ruwweg bolvormig en gedraagt zich dus alsof het een negatieve puntlading is die zich in het midden van de wolk bevindt. Deze negatieve puntlading bevindt zich niet op de kern, maar is naar de zijkant verplaatst. Deze verschuiving zorgt ervoor dat de moleculen dipolen worden. De zijkanten van de moleculen in het papier die zich het dichtst bij de tape bevinden worden licht negatief geladen waardoor er een kleine aantrekking plaatsvindt. De positieve kant van het atoom/molecuul wordt afgestoten door de tape, maar omdat deze kant verder van de tape verwijderd is, is er een netto aantrekkingskracht tussen de tape en het papier. Wanneer de negatief geladen B-Tape dichtbij wordt gebracht, worden de elektronenwolken van de tape weggeschoven waardoor de zijden van de atomen in het papier die zich het dichtst bij de tape bevinden, relatief positief blijven.
  • Het neutrale krantenpapier en het aluminiumfolie worden door zowel de negatieve PVC-staaf als het positieve plexiglas aangetrokken. Neutraal betekent dus niet dat er geen ladingen zijn; in feite heeft het neutrale krantenpapier miljarden ladingen alleen zijn de + en de – ladingen ongeveer hetzelfde in aantal en gelijkmatig verdeeld zodat ze elkaar neutraliseren.
  • Bij een eventuele discussie over ladingsbehoud kunnen de leerlingen eerst zorgvuldiger nadenken over wat er gebeurt als de bovenste en onderste tapes uit elkaar worden getrokken. De T-tape wordt positief geladen omdat de elektronen worden overgebracht naar de B-tape. Het totale aantal elektronen verandert niet, alleen hun verdeling op de tapes.
  • Ten slotte de vraag ‘wat heb je geleerd over natuurkunde’?
  • Onderstaande Phet-app kan naderhand worden getoond om het nieuwe model aanschouwelijk te maken. Ballonnen en statische elektriciteit - Statische elektriciteit | Elektrische ladingen | Elektrische kracht - PhET Interactieve Simulaties (colorado.edu)

Organisatie

  • Benodigde tijd: 60 minuten (introductie, uitvoering, verwerking, discussie, W1 werkblad).
  • Bij lessen van 45-50 minuten is het mogelijk de introductie, uitvoering, verwerking én discussie in één les te doen. Het werkblad W1 kan als huiswerk opgegeven worden en de volgende les worden besproken.
  • De demo wordt klassikaal uitgevoerd. Een powerpoint, waar afbeeldingen en opdrachten in staan, biedt ondersteuning.
  • Uitvoering deel 1, bespreking deel 1, uitvoering deel 2, bespreking deel 2, uitvoering deel 3, bespreking deel 3, werkblad 1 volgen elkaar op.
  • Leerlingen werken in groepjes van drie personen.
  • De discussie gaat klassikaal waarbij leerlingen, door de docent uitgekozen, ‘voor het bord’ komen.
  • De uitwerking van het werkblad kan ook klassikaal gedaan worden (leerlingen achter hun whiteboard).

Voorbeeld resultaten

Deel 1

5. Maak een schets van een zijaanzicht van twee T-tapes die elkaar naderen (alleen de elektrische kracht is weergegeven, niet de zwaartekracht of wrijvingskracht).

Maak een schets van een zijaanzicht van twee T-tapes die elkaar naderen maar waarbij de afstand ertussen gehalveerd is (vergeleken met de eerste schets (alleen de elektrische kracht is weergegeven, niet de zwaartekracht of wrijvingskracht).

Deel 2

9. Beschrijf wat je ziet wanneer twee stukjes aluminiumfolie naar elkaar toegebracht worden

     Er gebeurt niets

10. Beschrijf wat je ziet wanneer twee stukjes krantenpapier naar elkaar toegebracht worden

       Er gebeurt niets

13. Beschrijf wat je ziet wanneer de T-tape bij de T-tape, B-tape, het krantenpapier en aluminiumfolie wordt gehouden.

14. Beschrijf wat je ziet wanneer de T-tape bij de T-tape, de T-tape bij de B-tape en de B-tape bij de B-tape wordt gehouden.

Deel 3

15. Een opgewreven PVC-staaf wordt bij elk van de vier hangende strips gehouden. Laat leerlingen beschrijven wat ze zien. Let op de kracht van de interacties.

  • De PVC-staaf en het papier trekken elkaar aan.
  • De PVC-staaf en het folie trekken elkaar aan. De aantrekking is sterker dan bij het papier.
  • De PVC-staaf en de T-tape trekken elkaar sterk aan.
  • De PVC-staaf en de B-tape stoten elkaar sterk af.

16. Een opgewreven staaf van plexiglas wordt bij elk van de vier hangende strips gehouden. Laat leerlingen beschrijven wat ze zien. Let op de kracht van de interacties.

  • De plexiglas-staaf en het papier trekken elkaar aan.
  • De plexiglas-staaf en het folie trekken elkaar aan. De aantrekking is sterker dan bij het papier.
  • De plexiglas-staaf en de T-tape stoten elkaar sterk af.
  • De plexiglas-staaf en de B-tape trekken elkaar sterk aan.

17. Op basis van observaties kunnen de T- en B-tape opnieuw worden gelabeld (met + en -).

Omdat een opgeladen PVC-staaf negatief is geladen en deze de T-tape aantrekt en de B-tape afstoot, concluderen we dat de T-tape positief en de B-tape negatief geladen is. De observatie bij opdracht 16 bevestigt dit.

Open bestand Werkblad sticky tape

Open bestand Werkblad sticky tape uitwerking

Open bestand Powerpoint bij sticky tape demo

Colofon

Het arrangement Elektrostatica: ontwikkeling van lading en veld begrip is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-11-09 13:48:02
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
Tot eind 19e eeuw werden atomen beschouwd als ondeelbare, neutrale bollen. Experimenten van o.a. Thomson en Rutherford toonden aan dat een atoom twee typen lading bevat. Het sticky tape practicum kan ook gebruikt worden om aan te tonen dat een atoom positieve en negatieve ladingen bevat. Het laat afstoting en aantrekking van geladen en ongeladen voorwerpen in de klas zien. Leerlingen bouwen uiteindelijk zelf een model van de structuur van een atoom dat de fenomenen, die bij deze demo te zien zijn, verklaart.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten
Trefwoorden
elektromagnetisme, iol, modeldidactiek, nvon

Gebruikte Wikiwijs Arrangementen

Modeldidactiek. (z.d.).

Basissjabloon

https://maken.wikiwijs.nl/207484/Basissjabloon

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open