Menu
Administrative information
  • Zoeken in arrangement
    bèta
  • Colofon
  • Opties
    Gebruik
    • Download als PDF
    • Alle download opties
    • Kopieer arrangement
    Weergave
    • Menu links
    • Geen menu
    • Menu onder voor digibord
  • wikiwijs-logo
    • Over Wikiwijs
    • Wikiwijs Updates
    • Disclaimer
    • Privacy
    • Cookies
    Wikiwijs is een dienst van

Lecture: Model Compression - Edge Computing

Lecture: Model Compression - Edge Computing

Administrative information


Title

Model Compression - Edge Computing
Duration 45 mins
Module C
Lesson Type Lecture
Focus Technical - Future AI
Topic Advances in ML models through a HC lens - A result Oriented Study  

 

Keywords


model compression,pruning,quantization,knowledge distillation,

 

Learning Goals


  • Understand the concept of model compression
  • Provide the rationale behind the techniques of pruning, quantization and knowledge distillation
  • Prepare for understanding of basic implementations using a high-level framework like TensorFlow

 

Expected Preparation


Learning Events to be Completed Before

  • Lecture: Hardware and software frameworks for deep learning

Obligatory for Students

  • Knowledge of the supervised learning theory
  • Introduction to machine learning and deep learning concepts given by previous lectures

Optional for Students

  • Knowledge of the most common hyper parameters involved in neural networks building process

References and background for students

  • Knowledge distillation - Easy
  • Song Han, et al. "Learning both Weights and Connections for Efficient Neural Networks". CoRR abs/1506.02626. (2015).
  • Song Han, et al. "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding." 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016. Yanzhi Wang, et al. "Non-Structured DNN Weight Pruning -- Is It Beneficial in Any Platform?". CoRR abs/1907.02124. (2019).
  • Cheong and Daniel. "transformers.zip: Compressing Transformers with Pruning and Quantization"
  • Song Han, et al. "Learning both Weights and Connections for Efficient Neural Networks". CoRR abs/1506.02626. (2015).
  • Davis W. Blalock, et al. "What is the State of Neural Network Pruning?." Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.
  • https://github.com/kingreza/quantization
  • Song Han, et al. "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding." 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016.
  • Zhi Gang Liu, et al. "Learning Low-precision Neural Networks without Straight-Through Estimator (STE)." Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. ijcai.org, 2019.
  • Peiqi Wang, et al. "HitNet: Hybrid Ternary Recurrent Neural Network." Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 2018.
  • Cristian Bucila, et al. "Model compression." Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006. ACM, 2006.
  • Geoffrey E. Hinton, et al. "Distilling the Knowledge in a Neural Network". CoRR abs/1503.02531. (2015).
  • https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764
  • https://www.ttic.edu/dl/dark14.pdf
  • https://josehoras.github.io/knowledge-distillation/

Recommended for Teachers

  • Survey on Model Compression

 

Lesson materials


  • Lecture Slides on Model Compression - Elaborate version
  • Lecture Slides on Model Compression - Simplified version

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


  • Provide insight into trends and why models are growing
  • Give examples and reasons why it is necessary to have smaller models
  • Provide an overview of the techniques, their pros and cons
  • Propose pop up quizzes
  • Try to stick to the time table
  • If possible provide more time to the question and answer session if needed

The lecture can refer to model types, model evaluation, model fitting and model optimization

 

Outline

 


Duration Description Concepts Activity
0-10 min Introduction to techniques for model compression: what it is, what it is for, when and why it is needed Model compression Introduction to main concepts
10-20 min Pruning: concepts and techniques. Main approaches to pruning Pruning Taught session and examples
20-30 min Quantization: concepts and techniques. Main approaches to quantization Quantization Taught session and examples
30-40 min Knowledge distillation: concepts and techniques. Main approaches to knowledge distillation Knowledge distillation Taught session and examples
40-45 min Conclusion, questions and answers Summary Conclusions

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Model Compression - Edge Computing is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Auteur
HCAIM Consortium
Laatst gewijzigd
2024-02-14 22:44:30
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
copy this template and fill in
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Introduction to the resurgence of AI and ML

https://maken.wikiwijs.nl/202201/Lecture__Introduction_to_the_resurgence_of_AI_and_ML

Lecture: Model Compression - Edge Computing
nl
HCAIM Consortium
2024-02-14 22:44:30
copy this template and fill in
leerling/student
PT4H

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

  • pdf
  • json
  • IMSCP package

Metadata

  • Metadata overzicht (Excel)

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

  • IMSCC package

Voor developers

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

Sluiten