Lecture: Introduction to the resurgence of AI and ML

Lecture: Introduction to the resurgence of AI and ML

Administrative information


 

Title

Introduction to resurgence of AI and ML
Duration 45-60
Module C
Lesson Type Lecture
Focus Technical - Future AI
Topic Introduction

 

Keywords


Turing test, Birth of AI, Resurgence of AI, AI definition,

 

Learning Goals


  • Understanding emergence of AI
  • Knowledge of events leading to the AI winters
  • Raionale key factors responsible for the Resurgence of AI

 

Expected Preparation


Obligatory for Students

  • Machine learning concepts
  • Deep learning concepts

Optional for Students

None.

References and background for students

None.

Recommended for Teachers

None.

 

Lesson materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


The goal of this lecture is to provide students with a brief history of AI and the events/developments that have lead to an explosion of AI applications and the current wave of AI research, investment and the call for AI regulation. It should set the stage for more in-depth studies of advanced AI concepts, technological and regulatory developments that will shape future AI. The lecture should:

  • Present a chronological timeline of AI developments from past to present
  • Use real-world examples to illustrate AI landmarks through time
  • Focus on the impact and direction of AI research leading to the current wave of AI applications
  • Pay particular attention to the recent explosion of AI, its ubiquitous nature and the need to focus on ethical considerations

 

Outline


Duration Description Concepts Activity Material
10 min Birth of AI: tracing the first notions of AI AI in Greek mythology, automotons, early science fiction, 3 laws of robotics (Asimov), questions driving AI, categorising AI Taught session and examples Lecture materials
5 min Events & developments leading to the first AI winter Formal logic and AI, thinking machines, turing test, early success stories (Arthur Samuel checkers program 1955), early machine translation, Dartmouth summer project (1956), Rosenblatt's perceptron (1957), fall of connectionism (Minsky & Papert 1969), Lighthill report (1973) Taught session and examples Lecture materials
5 min Events & developments leading to the second AI winter Expert systems (DENDRAL, MYCIN 1972), Japanese fifth generation project (1982), Backpropagation (1986), early character recognition (LeNeT-1 1989), commercialisation of AI, limitations of expert systems, slow progress in nerual network development (Support Vector, Bayesian style methods) Taught session and examples Lecture materials
10 min Big data: how the collection of big data has impacted AI and machine learning Web 2.0 and explosion of data, knowledge bottleneck (Halevy et al. 2009), growth of social media (semi-structured and unstructured data), mobile device and health data, sensor-based internet enabled devices (IOT), race to extract meaningful data Taught session and examples Lecture materials
10 min Resurgence of AI: how data and computational power has given rise to a new wave of ubiquitous AI and the call for regulation GPU-based computation (CUDA 2012), rise of personal assistants (Google, Apple, Amazon, Microsoft), AlexNet (ImageNet 2012), Google Brain (2012), Tensor Processing Units (2016), AlphaGo & AlphaFold (2016, 2020), self-driving cars Waymo (2020), EU AI Act (2021) Taught session and examples Lecture materials
5 min Conclusion, questions and answers Summary Conclusions Lecture materials

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Introduction to the resurgence of AI and ML is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-02-19 16:04:33
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
copy this template and fill in
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Guest Lecture on Future of AI

https://maken.wikiwijs.nl/202200/Lecture__Guest_Lecture_on_Future_of_AI

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open