Lecture: Federated Learning - Advances and Open Challenges

Lecture: Federated Learning - Advances and Open Challenges

Administrative information


Title

Federated Learning - Advances and Open Challenges
Duration 45 - 60
Module C
Lesson Type Lecture
Focus Technical - Future AI
Topic Advances in ML models through an HC lens - A result Oriented Study

 

Keywords


Federated Learning,Decentralised data,Scalability,Non-convex optimization,Bias and Fairness,

 

Learning Goals


  • Identify and discuss the advances of Federated Learning
  • Recognise Open challenges of federated learning and discuss the proposed solutions

 

Lesson materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


The goal of this lecture is to teach students how machine learning models can be refined when the model has been deployed on a device. This lecture should cover some of the basic concepts in FL but focus on the open problems, advances, and challenges outlined below.

 

Outline


Duration Description Concepts Activity Material
5 min Federated learning (FL) lifecycle & training Lifecycle (problem identification, instrumentation, prototyping, training, evaluation, deployment), Training (selection, broadcast, computation, aggregation, model update) Taught session and examples Lecture materials
10 min Algorithmic & practical challenges Fully Decentralized / Peer-to-Peer Distributed Learning, SGD and network topologies, compression and quantization methods, Blockchain implementation of central server for aggregation, Cross-Silo (FL), Split learning Taught session and examples Lecture materials
5 min Efficiency & Effectiveness Indepentant & identically distributed data (IID Data), Strategies for Dealing with Non-IID Data, Optimization Algorithms for FL Taught session and examples Lecture materials
10 min Model security (privacy & model attack) Actors, Threat Models, Privacy in Depth, Secure Computations, Trusted execution environments, Local/Distributed/Hybrid differential privacy, Verifiability, External Malicious Actors Taught session and examples Lecture materials
5 min Fairness & Bias Bias in Training Data, Fairness Without Access to Sensitive Attributes, Improving model diversity, Taught session and examples Lecture materials
5 min Systematic challenges Development and deployment challenges, code deployment, monitoring and debugging, System induced bias, Parameter tunning Taught session and examples Lecture materials
5 min Conclusion, questions and answers Summary Conclusions Lecture materials

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Federated Learning - Advances and Open Challenges is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-02-14 22:18:50
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
copy this template and fill in
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Interactive session: Filter Bubble - Political, Corporate and Geographical

https://maken.wikiwijs.nl/202193/Interactive_session__Filter_Bubble___Political__Corporate_and_Geographical

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open