Lecture: Hyperparameter tuning

Lecture: Hyperparameter tuning

Administrative information


Title Hyperparameter tuning
Duration 60 min
Module B
Lesson Type Lecture
Focus Technical - Deep Learning
Topic

Hyperparameter tuning

 

Keywords


Hyperparameter tuning, activation functions, loss, epochs, batch size,

 

Learning Goals


  • Investigate effects on capacity and depth
  • Experient with varying epochs and batch sizes
  • Trial different activation functions and learning rates

 

Expected Preparation


Obligatory for Students

None.

Optional for Students

None.

References and background for students:

  • John D Kelleher and Brain McNamee. (2018), Fundamentals of Machine Learning for Predictive Data Analytics, MIT Press.
  • Michael Nielsen. (2015), Neural Networks and Deep Learning, 1. Determination press, San Francisco CA USA.
  • Charu C. Aggarwal. (2018), Neural Networks and Deep Learning, 1. Springer
  • Antonio Gulli,Sujit Pal. Deep Learning with Keras, Packt, [ISBN: 9781787128422].

Recommended for Teachers

None.

 

Lesson Materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


This lecture will introduce students to the fundamentals of the hyperparameter tuning. We will use the Census Dataset as the examples of the use and outcomes from tuning various hypermeters. The Adult Census dataset is a binary classification problem. More on this dataset in the corresponding tutorial. The goal of this lecture is to introduce several hyperparameters with examples of how modifying these hyperparameters may aid or hinder learning. In addition we provide examples of under and overfitting, nose and performance gains (training time and in some cases accuracy/loss) when each of the hyperparameters are tunned. We will use diagnostic plots to evaluate the effect of the hyperparameter tunning and in particular a focus on loss, where it should be noted that the module we use to plot the loss is matplotlib.pyplot, thus the axis are scaled. This can mean that significant differences may appear not significant or vice versa when comparing the loss of the training or test data. In addition some liberties for scaffolding are presented, such as the use of Epochs first (almost as a regularization technique) while keeping the Batch size constant. Ideally these would be tunned together, but for this lecture they are separated.
 

Outline


Time schedule
Duration (Min) Description
5 Overview of the data
10 Capacity and depth tunning (under and over fitting)
10 Epochs (under and over training)
10 Batch sizes (for noise suppression)
10 Activation functions (and their effects on performance - time and accuracy)
10 Learning rates (vanilla, LR Decay, Momentum, Adaptive)
5 Recap on the forward pass process

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Hyperparameter tuning is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:14:40
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Hardware and software frameworks for deep learning

https://maken.wikiwijs.nl/200295/Lecture__Hardware_and_software_frameworks_for_deep_learning

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open