Lecture: Forward propagation

Lecture: Forward propagation

Administrative information


Title Forward propagation
Duration 60 min
Module B
Lesson Type Lecture
Focus Technical - Deep Learning
Topic

Forward pass

 

Keywords


Forward pass, Loss,

 

Learning Goals


  • Understand the process of a forward pass
  • Understand how to calculate a forward pass prediction, as well as loss unplugged
  • Develop a forward pass using no modules in Python (other than Numpy)
  • Develop a forward pass using Keras

 

Expected Preparation


Learning Events to be Completed Before

None.

Obligatory for Students

None.

Optional for Students

  • Matrices multiplication
  • Getting started with Numpy
  • Knowledge of linear and logistic regression (from Period A Machine Learning: Lecture: Linear Regression, GLRs, GADs)

References and background for students:

  • John D Kelleher and Brain McNamee. (2018), Fundamentals of Machine Learning for Predictive Data Analytics, MIT Press.
  • Michael Nielsen. (2015), Neural Networks and Deep Learning, 1. Determination press, San Francisco CA USA.
  • Charu C. Aggarwal. (2018), Neural Networks and Deep Learning, 1. Springer
  • Antonio Gulli,Sujit Pal. Deep Learning with Keras, Packt, [ISBN: 9781787128422].

Recommended for Teachers

None.

Lesson Materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


This lecture will introduce students to the fundamentals of forward propagation for an artificial neural network. This will introduce students to the topology (weights, synapses, activation functions and loss functions). Students will then be able to do a forward pass using pen and paper, using Python with only the Numpy library (for matrices manipulation) and then using KERAS as part of the tutorial associated with this LE. This will build fundamental understanding of what activation functions apply to specific problem contexts and how the activation functions differ in computational complexity. In the lecture the outer layer activation function and corresponding loss functions will be examined for use cases such as binomial classification, regression and multi-class classification.

  • Overview of a neural network
  • Definition of terms/components
  • Weights and activation functions
  • Loss functions, which one for which problem context
  • Using matrices to conduct a forward pass

Note:

  • Use of Sigmoid in the outer layer and MSE as the loss function.
    • With tine limitations, a singular approach/topology/problem context was selected. Typically, one would start with regression for a forward pass (with MSE as the loss function), and for deriving backpropagation (thus having a linear activation function in the output layer, where this reduces the complexity of the derivation of the backpropagation function), Then one would typically move to a binary classification function, with sigmoid in the output layer, and a binary cross-entropy loss function. With time constraints this set of lectures will use three different example hidden activation functions, but will use a regression problem context. To add the complexity of a sigmoid activation function in the output layer, the regression problem used in the two first lectures of this set, the problem example is based on a normalised target value (0-1 based on a percentage grade problem 0-100%), thus sigmoid is used as an activation function in the output layer. This approach allows students to easily migrate between regression and binary classification problems, by simply only changing the loss function if a binary classification problem, or if a non-normalised regression problem is being used, the student simply removes the outer layer activation function.
  • Core components are the application of, using a high level library, in this case KERAS via the TensorFlow 2.X library.
    • Pen and paper are optional and only used to show the forward pass and backpropagation derivation and application (using the examples from the lecture slides).
    • Python code without use of high level libraries, is used to show how simple a neural net (using the examples from the lecture slides). This also allows for discussion on fast numerical/matrices multiplication and introduce why we use GPUs/TPUs as an optional element.
    • KERAS and TensorFlow 2.X are used and will be used for all future examples.

 

Neural network used in these introductory lecture series
Neural network used in these introductory lecture series

Outline


 
Time schedule
Duration (Min) Description
10 Definition of Neural Network Components
15 Weights and Activation functions (Sigmoid, TanH and ReLu)
15 Loss functions (Regression, binomial classification, and multi class activation)
15 Using matrices for a forward pass
5 Recap on the forward pass

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Forward propagation is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:13:27
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Derivation and application of backpropagation

https://maken.wikiwijs.nl/200293/Lecture__Derivation_and_application_of_backpropagation

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open