Lecture: Derivation and application of backpropagation

Lecture: Derivation and application of backpropagation

Administrative information


Title Derivation and application of backpropagation
Duration 60 min
Module B
Lesson Type Lecture
Focus Technical - Deep Learning
Topic

Deriving and Implementing Backpropagation

 

Keywords


Backpropagation, activation functions, dieivation,

 

Learning Goals


  • Develop an understanding of gradient and learning rate
  • Derive backpropagation for hidden and outer layers
  • Implimenting Backpropagation unplugged and plugged using different activation functions

 

Expected Preparation


Learning Events to be Completed Before

Obligatory for Students

  • Calculus revision (derivatives, partial derivatives, the Chain rule)

Optional for Students

None.

References and background for students:

  • John D Kelleher and Brain McNamee. (2018), Fundamentals of Machine Learning for Predictive Data Analytics, MIT Press.
  • Michael Nielsen. (2015), Neural Networks and Deep Learning, 1. Determination press, San Francisco CA USA.
  • Charu C. Aggarwal. (2018), Neural Networks and Deep Learning, 1. Springer
  • Antonio Gulli,Sujit Pal. Deep Learning with Keras, Packt, [ISBN: 9781787128422].

Recommended for Teachers

None.

Lesson Materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


This lecture will introduce students to the fundamentals of the backpropagation algorithm. This lecture will start with the notion of the curse of dimensionality leading to the need of a heuristic approach - followed by the overview of how gradient can be used to adjust the weights. This then introduces the backpropagation algorithm. We then also introduce the hyperparameter of learning rate and a brief over view of the affect of large and small values (this will be expanded in Lecture 3). Then using the same introductory network from Lecture 1, we derive the outer layer backpropagation formula, and then finally, we will derive the inner layer backpropagation algorithm. This lecture concludes with examples of different activation functions, and how the algorithm can be applied. The corresponding tutorial will include additional pen and paper derivations, practical examples and the use of code (just Numpy and the KERAS) to implement the backpropagation algorithm.

  • The initial concept of brute force weight selection, and the curse of dimensionality
  • Introduction to gradient and how this address the problem of iterative, heuristic weight adjustments
  • Why learning rate is needed and the affects of choosing small and large values
  • Deriving the gradient (thus the backpropagation algorithm) for the output layer with Sigmoid as the outer activation function
  • Deriving the gradient (thus the backpropagation algorithm) for the hiden layer with Sigmoid as the outer activation function
  • Presenting the final backpropagation formula
  • Using different activation functions (Outer Layer: Linear, Sigmoid and Softmax; Hidden layer: ReLu, SIgmoid and TanH) in the backpropagation algorithm

Outline

Time schedule
Duration (Min) Description
5 Introduction to learning, gradient and learning rate
20 Derivation of the backpropagation algorithm for the outer layer (Sigmoid)
20 Derivation of the backpropagation algorithm for the hidden layer (Sigmoid)
10 Implementing the backpropagation algorithm and the use of different activation functions for each layer
5 Recap on the backpropagation algorithm

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Derivation and application of backpropagation is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:13:07
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Convolutional Neural Networks

https://maken.wikiwijs.nl/200292/Lecture__Convolutional_Neural_Networks

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open