Lecture: Security and robustness

Lecture: Security and robustness

Administrative information


Title Trustworthy Machine Learning
Duration 60 min
Module B
Lesson Type Lecture
Focus Ethical - Trustworthy AI
Topic Confidentiality, Integrity and Availiability Problems in Machine Learning

Keywords


Confidentiality,Integrity,Availability,Poisoning,Evasion,Adversarial examples,Sponge examples,Backdoors,Explainability evasion,Robustness,Trade-off,

 

Learning Goals


  • Gain a general overview of the main security problems of machine learning
  • Understanding the main confidentiality, integrity, and availability issues of machine learning
  • Distinguishing evasion, poisoning and backdoors attacks
  • Understanding clean-label poisoning attacks
  • Obtain the the intuition of adversarial examples and its practical impact through real-life examples
  • Demonstrating the availability attacks by artificially constructed sponge examples
  • Understanding the threat of explainability evasion
  • Understanding the trade-off between robustness and model quality
  • Learn the principles of AI (robustness) auditing

Lesson Materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

Instructions for Teachers


This course provides an overview of the security of machine learning systems. It focuses on attacks that are useful for auditing the robustness machine learning models. Teachers are recommended to use real-life examples to demonstrate the practical relevance of these vulnerabilities especially for privacy-related issues whose practical relevance is often debated and considered as an obstacle to human development. Students must understand that privacy risks can also slow down progress (parties facing confidentiality risks may be reluctant to share their data). Students can gain understanding of the different security and privacy risks of ML models and can further develop more practical skills to audit ML models in the related practical learning events, which are:

Outline

 
Duration (min) Description Concepts
5 CIA triad CIA (confidentiality, intergrity, availability) in Machine Learning
15 Confidentiality Membership attack, training data extraction. Model stealing.
20 Integrity Evasion, Poisoning (targeted, untargeted), Evading explainability, Backdoors.
15 Availability Generating sponge examples.
5 Conclusions  

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Lecture: Security and robustness is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-05-15 11:17:03
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    .
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: Introduction to privacy and risk

    https://maken.wikiwijs.nl/200135/Lecture__Introduction_to_privacy_and_risk

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.