Lecture: Introduction to privacy and risk

Lecture: Introduction to privacy and risk

Administrative information


Title Introduction to Data Privacy
Duration 135 min
Module B
Lesson Type Lecture
Focus Ethical - Trustworthy AI
Topic Data Privacy

 

Keywords


Data Privacy, Privacy Risk, Personal data, Sensitive data, Profiling, Tracking, Anonymization, Privacy in Machine Learning, TOR, Pseudonymization, Direct and indirect identifiers,

 

Learning Goals


  • Obtain a general understanding of the notion of privacy.
  • Understand the difficulties and pitfalls of data privacy analysis and detection of personal data.
  • Understand the trade-off between anonymization and data utility (no free lunch).
  • Understand the difference between data security and data privacy.
  • Learn the basic principles of anonymous communication and TOR.
  • Discern, investigate and discuss key risks which AI and Machine Learning models introduce

 

Expected Preparation


Obligatory for Students

  • Basic Linear Algebra,
  • Basic Machine Learning

Optional for Students

None.

References and background for students:

Recommended for Teachers

Lesson Materials


 


The materials of this learning event are available under CC BY-NC-SA 4.0.

 

 

 

Instructions for Teachers


This lecture provides an overview of data privacy. It focuses on different privacy problems of web tracking, data sharing, and machine learning, as well as some mitigation techniques. The aim is to give the essential (technical) background knowledge needed to identify and protect personal data. The course sheds light on why deriving socially or individually useful information about people is challenging without revealing personal information. These skills are becoming a must of every data/software engineer and data protection officer dealing with personal and sensitive data, and are also required by the European General Data Protection Regulation (GDPR).

 

Outline

 
Duration (min) Description Concepts
20 What is Privacy? Privacy as a fundamental right. History or privacy. Importance of privacy. Illustration of data leakage; how much people share about themselve directly or indirectly? Why is privacy a problem? Importance of legislation and technical solutions (PETS).
15 Definition of Personal, Sensitive, Confidential data Definition and personal data in GDPR. Direct vs. indirect identifiers. Definition of identifiability. Illustrative examples. Defintion of sensitive data in GDPR, examples. Personal vs sensitive vs confidential data.
20 Illustration of Personal Data Leakage: Tracking Purpose of tracking. Web tracking, Browser fingerprinting, WiFi tracking, Ultrasound tracking, Underground tracking through barometer sensor, location inference from battery usage, uniqueness of location data
20 Psychological Profiling OCEAN model. Inference of OCEAN personality traits from personal data. Manipulation through personality traits, political ads. Threat of psychological profiling, cognitive security.
20 Anonymization Data types, different types need different anonymization techniques. Pseudo-anonymization, de-anonymization, re-identification. Quasi-identifiers, k-anonymity. Generalization, suppression, clusterting as general k-anonymization techniques. Anonymization vs. utility. Impossibility of anonymization without utility loss. Problems of k-anonymization (background knowledge, intersection attack). Anonymization of aggregate data; why aggregation does not prevent re-identification. Query auditing. Auditing SUM queries over reals. Hardness of query auditing. Query perturbation, Differential Privacy.
20 Anonymous communication Problem of anonymous communication. Sender, receiver anonymity, unlinkability. Anonymizing proxy. Chaum MIX, MIXnet. TOR, illustration of TOR. Circuit setup in TOR. Exit policies. Some attacks against TOR.
20 Privacy in AI Main privacy problems in Machine Learning; membership inference, model extraction, fairness. Source of fairness problems (bias in training data collection/labelling, feature selection, different cultural interpretations of fairness). Protected attributes. Fairness through blindness, redundant encodings (proxy attributes).
5 Conclusions Why privacy matters? Why surveillance is a problem? Why everbody has something to hide? Why privacy is hard? What competences does a Data Protection Officer have? Why is there a need for Data Protection Officers?

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Lecture: Introduction to privacy and risk is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-05-15 11:15:03
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    .
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: Decision Theory

    https://maken.wikiwijs.nl/199052/Lecture__Decision_Theory

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.