Lecture: Decision Theory

Lecture: Decision Theory

Administrative information


Title Decision theory
Duration 60
Module A
Lesson Type Lecture
Focus Technical - Foundations of AI
Topic Foundations of AI

 

Keywords


consequentialism, subjectivism, probability theory, utility theory, decision theory, optimal decision, bounded rationality, satisficing, cognitive bias, effective altruism, off-switch game, sequential decisions, value of information, multi-armed bandit, exploration-exploitation dilemma,

 

Learning Goals


  • The learner gets acquainted with non-quantitative and quantitative approaches to ethics
  • students can define and calculate optimal decisions using univariate distributions and utility/loss functions
  • students can know the elements of decision networks: stochastic/action/utility nodes
  • students can know and apply Bayes' rule (multivariate)
  • students can construct a Naive Bayesian Network (NBN) model
  • students can expand NBN to an NBN-based decision network
  • students can calculate the value of perfect information

 

Expected Preparation


Learning Events to be Completed Before

Obligatory for Students

  • Probability distribution, conditional probability, expected value (e.g from AIMA4e or wikipedia)
  • Influence diagram

Optional for Students

  • Artificial Intelligence: A Modern Approach, 4th Global ed. by Stuart Russell and Peter Norvig, Pearson (AIMA4e):ch12-18

References and background for students:

  • AIMA4e:ch12-18

Recommended for Teachers

 

Lesson Materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


  • Adapt the basic triple node decision net
  • Find the best and worst decisions
  • Adapt the naive Bayes net
  • Find the most valuable evidence (feature)
  • During in-class activities, ask students to guess optimal decisions

Outline/time schedule


 
Duration Description Concepts Activity Material
5 Sources of uncertainty and Interpretations of probability uncertainty    
5 Bernoulli and multinomial distributions univariate distributions    
5 Axioms of probability theory (additivity) probability theory    
5 Elements and graphical notation of a single-step decision problem: the decision network of stochastic→utility/loss←action nodes decision problem    
5 Utility and loss functions, common loss functions and matrices preferences    
5 Expected value, the maximum expected utility principle optimal decision    
5 Conditional probability and Bayes' theorem (for two variables and with condition) conditional probability    
5 Independence and conditional independence independence    
5 Example of a Naive Bayesian network Naive Bayes net    
5 Example of decision network based on a Naive Bayesian network      
5 Posterior inference and selection of optimal decision posterior inference    
5 Between evidence inference and calculation of the value of information value of information    

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Decision Theory is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 10:59:13
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Duty Ethics

https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open