Lecture: Decision Networks

Lecture: Decision Networks

Administrative information


Title Decision networks
Duration 60
Module A
Lesson Type Lecture
Focus Technical - Foundations of AI
Topic Foundations of AI

 

Keywords


Naive Bayesian networks,Bayesian networks,Decision networks,maximum exp utility principle,optimal decision,probabilistic inference,value of information,

 

Learning Goals


  • Naive Bayesian networks
  • Bayesian networks
  • Decision networks
  • Students can define a multivariate joint distribution: multinomial and Gaussian
  • Students can explain the difference between association versus causation
  • Students can define observational, causal, and counterfactual inference
  • Students can define fairness using observational and counterfactual reasoning

 

Expected Preparation


Learning Events to be Completed Before

Obligatory for Students

  • Probability (e.g. from AIMA4e or wikipedia)
  • basic concepts of probability theory
  • multivariate joint probability distributions, chain rule

Optional for Students

  • Artificial Intelligence: A Modern Approach, 4th Global ed. by Stuart Russell and Peter Norvig, Pearson (AIMA4e):ch16-17

References and background for students:

  • AIMA4e:ch16-17

Recommended for Teachers

  • AIMA4e:ch16-17
  • Charniak, E., 1991. Bayesian networks without tears. AI magazine, 12(4), pp.50-50.
  • Pearl, J., 2019. The seven tools of causal inference, with reflections on machine learning. Communications of the ACM, 62(3), pp.54-60.

Instructions for Teachers


  • Reminder: framework of a one-step decision problem, elements (action, uncertainty, utility/loss), maximum expected utility principle
  • Reminder: probabilistic graphical models, causal diagrams
  • Define elements of a decision network: chance, action, utility/ loss nodes
  • Explain workflow: evidences, actions, probabilistic inference, expectations, maximizing action
  • Example
  • Discuss value of information

Outline/time schedule


 
Duration Description
10 Multivariate joint distribution: multinomial and Gaussian
5 Difference between association versus causation
15 General Bayesian networks
15 Observational, causal, and counterfactual inference
15 Example: definition of fairness using observational, causal and counterfactual reasoning

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Decision Networks is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 10:58:53
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Duty Ethics

https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open