Aftreksommen met grote getallen

Aftreksommen met grote getallen

Net als bij optelsommen, kun je aftreksommen met grote getallen het beste onder elkaar uitrekenen. Ook hiervoor hebben we weer een stappenplan.  
Neem de voorbeeldsommen hieronder over in je schrift en voer de stappen hieronder ook zelf uit in je schrift. Dan onthoud je ze beter.

Voorbeeld: \(\small178 - 35 = \)

a.

Zet de getallen onder elkaar.
Zorg ervoor dat de getallen – aan de rechterkant – goed onder elkaar staan.
Dus de eenheden onder de eenheden.
Noteer de waarde van de cijfers erbij:
D = duizendtallen,
H = honderdtallen,
T = tientallen en
E = eenheden.
In dit voorbeeld zijn er geen duizendtallen, dus zetten we ook geen D neer.


b.

Trek nu eerst de eenheden van elkaar af.  
In dit geval is \(\small8 - 5 = 3\).
De \(\small3\) zet je onder de streep bij de eenheden.


c.

Trek daarna de tientallen van elkaar af.
In dit geval dus \(\small7 - 3 = 4\).  
Omdat het tientallen zijn is het dus eigenlijk \(\small70 - 30 = 40\).
De \(\small4\)  zet je weer onder de streep, maar nu dus bij de tientallen, want deze \(\small4\) is \(\small40\) waard.


d.

Trek dan de honderdtallen van elkaar af.
In dit geval is het makkelijk want er maar \(\small1\)  honderdtal en hoef je er niks van af te trekken. Dus de \(\small1\)  zet je nu onder de streep bij de honderdtallen, want de \(\small1\)  is honderd waard.


e.

Trek dan de duizendtallen van elkaar af.
Er zijn geen duizendtallen, dus we zijn al klaar!
Het antwoord is \(\small43\).

 

Aftreksommen met grote getallen - 2

Nog een voorbeeld: \(\small2364 - 1435 = \)

a.

Zet de getallen onder elkaar.


b.

Trek nu eerst de eenheden van elkaar af.  
In dit geval is \(\small4 - 5 =\)  … Maar dat kan helemaal niet!
Omdat we toch willen gaan aftrekken, gaan we lenen bij de buren. Bij de tientallen dus. Je trekt \(\small1\) van de tientallen af, dus \(\small6 - 1 = 5\), dan streep je de \(\small6\) bij de tientallen door en zet er een kleine \(\small5\) boven.

 

De \(\small1\) die je geleend hebt van de tientallen tel je dan op bij de eenheden. Maar let op, de geleende \(\small1\) is een tiental en is dus \(\small10\) waard. Dus \(\small10 + 4 = 14\). Je streept ook hier de \(\small4\) bij de eenheden door en zet er een kleine \(\small14\) boven.

 

Nu kunnen we de eenheden echt gaan aftrekken.
Dus \(\small14 – 5 = 9\) en we zetten de \(\small9\) onder de streep bij de eenheden.


c.

Trek daarna de tientallen van elkaar af.
In dit geval dus \(\small5 - 3 = 2\)  
Let op: we hadden de \(\small6\) doorgestreept en vervangen door de \(\small5\)!
We zetten de \(\small2\) dus weer onder de streep, maar nu bij de tientallen.


d.

Trek dan de honderdtallen van elkaar af.
In dit geval dus \(\small3 - 4 =\) … maar dat kan weer niet. Dus we moeten weer gaan lenen bij de buren aan de linkerkant. In dit geval dus bij de duizendtallen.  
We trekken weer \(\small1\) van de duizendtallen af, dus \(\small2 - 1 = 1\). We strepen de 2 bij de duizendtallen door en zetten er een kleine \(\small1\) boven.  
De \(\small1\) die je geleend hebt bij de duizendtallen tel je weer bij de honderdtallen op. Deze \(\small1\) is een duizendtal en dus \(\small10\) keer zoveel waard als de honderdtallen.  
Dus \(\small10 + 3 = 13\). We strepen de \(\small3\) bij de honderdtallen door en zetten er een kleine \(\small13\) boven. We kunnen nu weer gewoon de honderdtallen aftrekken. Dus \(\small13 – 4 = 9\).
We noteren de \(\small9\) onder de streep bij de honderdtallen.


e.

Trek dan de duizendtallen van elkaar af.
In dit geval dus \(\small1 - 1 = 0\). Weet je nog, we hadden de \(\small2\) doorgestreept en vervangen door de \(\small1\). We hoeven de \(\small0\) niet te noteren, omdat deze helemaal aan de linkerkant staat.  
Als je straks in een andere som een nul als antwoord krijgt, die NIET helemaal aan de linkerkant staat, dan noteer je die nul natuurlijk wel!

Aftreksommen met grote getallen - 3

Laatste voorbeeld: bijzondere situatie

In het vorige voorbeeld moest je twee keer lenen bij de linkerburen.
Maar wat als daar een \(\small0\) staat? Dan valt er dus niets te lenen bij de buren?

We willen onder elkaar uitrekenen \(\small1000 - 899 =\)

a.

Zet de getallen onder elkaar.


b.

Trek nu eerst de eenheden van elkaar af
\(\small0 - 9\) kan niet, dus we gaan lenen bij de buren, bij de tientallen dus. Maar daar staat ook een nul. Dan gaan we één deur verder naar de honderdtallen. Daar staat weer een nul. Dan gaan we weer een deur verder, naar de duizendtallen. Hèhè, daar staat eindelijk een \(\small1\). We willen dus van de duizendtallen, honderdtallen en tientallen samen lenen. Daar staat nu \(\small100\) en we lenen er \(\small1\) van. Dus \(\small100 - 1 = 99\).

We strepen bij de duizendtallen, honderdtallen en tientallen de \(\small100\) door en zetten er \(\small99\) boven.  
Bij de \(\small0\) bij de eenheden tellen we \(\small10\) op (van de geleende \(\small1\)) en zetten dat klein boven de eenheden. De nul strepen we door.

 

Nu kunnen we gewoon de som maken zoals we gewend zijn.


c.

Trek daarna de tientallen van elkaar af.


d.

Trek dan de honderdtallen van elkaar af.


e.

Trek dan de duizendtallen van elkaar af.  
Er zijn geen duizendtallen meer, dus het antwoord is \(\small101\).

 
  • Het arrangement Aftreksommen met grote getallen is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Auteur
    VO-content
    Laatst gewijzigd
    2023-07-25 10:20:43
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    Aftreksommen met grote getallen
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    VO-content - Kennisbanken. (2023).

    Optellen met grote getallen

    https://maken.wikiwijs.nl/195074/Optellen_met_grote_getallen

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.