Vijf vriendinnen gaan naar de schouwburg. Ze hebben vijf plaatsen besproken op één rij. Op hoeveel manieren kunnen ze de plaatsen onderling verdelen?
Een manier van oplossen is als volgt (zie ook figuur 1).
Ada mag als eerste kiezen; zij heeft keuze uit vijf plaatsen.
Betty heeft dan nog keuze uit vier stoelen.
Christiane kan nog uit drie stoelen kiezen.
Voor Diana zijn er nog twee mogelijkheden.
En Ellen rest slechts één stoel.
Het aantal verschillende mogelijkheden om de plaatsen onder de vijf vriendinnen te verdelen, is verrassend groot.
keus 1
keus 2
keus 3
keus 4
geen keus
↓
↓
↓
↓
↓
\(5\)
⋅
\(4\)
⋅
\(3\)
⋅
\(2\)
⋅
\(1\)
=
\(120\)
De rangschikking BDACE correspondeert met een pad in de boom in figuur 2.
De complete boom telt \(5⋅4⋅3⋅2⋅1=120\) paden.
Gymnastiek
In een klas zitten \(12\) jongens. Die hebben twee keer per week gymnastiek. Voordat het warmlopen begint, zet de leraar ze op een rijtje, iedere les in een andere volgorde.
Permutatie
We bekijken nogmaals het voorbeeld van de vijf vriendinnen die naar de schouwburg gaan. De vriendinnen kunnen op verrassend veel manieren onderling de zitplaatsen verdelen. Een mogelijke rangschikking is BDACE. Zo’n rijtje-van-vijf waarbij de volgorde van belang is, noem je een permutatie. Het aantal permutaties (of rangschikkingen) van de vijf vriendinnen is \(5⋅4⋅3⋅2⋅1=120\).
Faculteit
Vijf vriendinnen (maar ook: letters, cijfers, kleuren, ...) kun je op \(5⋅4⋅3⋅2⋅1=120\) manieren in volgorde zetten.
Voor het product \(5⋅4⋅3⋅2⋅1\) bestaat een afkorting: \(5!\).
Dit spreek je uit als \(5\)faculteit. (Het uitroepteken is hier dus een nieuw rekensymbool en heeft niets met opwinding te maken.)
Er geldt \(5!=5⋅4⋅3⋅2⋅1=120\).
Hieronder staan de uitkomsten van \(x!\) voor \(x=1,2,...,10\).
\(1!=1\)
\(6!=720\)
\(2!=2\)
\(7!=5040\)
\(3!=6\)
\(8!=40.320\)
\(4!=24\)
\(9!=362.880\)
\(5!=120 \)
\(10!=3.628.800\)
Je kunt hieruit zien hoe duizelingwekkend snel de faculteitsgetallen groeien.
Als je achter de uitkomst van \(9!\) een nul zet, krijg je de uitkomst van \(10!\).
Faculteit op rekenmachine
Steeds als je een aantal verschillende elementen moet rangschikken (op een rij moet zetten), kun je op je rekenmachine de knop \(x!\) gebruiken.
Ebbe berekent \(12!\) met zijn rekenmachine. Op het scherm verschijnt de uitkomst: \(4,79 \text{E}08\).
Dat betekent: \(4,79\) maal \(10^8\) ofwel \(479.000.000\).
Deze uitkomst is niet helemaal precies.
Bereken op je rekenmachine
Vul de juiste faculteiten in
Samenvattend:
Een rangschikking van elementen noemen we een permutatie. \(n\) elementen laten zich op \(n!\) manieren rangschikken.
Nogmaals de 12 jongens van de gymnastiekles
Nogmaals de \(12\) jongens van de gymnastiekles, die zich steeds in een ander rijtje moeten opstellen.
Veronderstel dat ze alle mogelijkheden achter elkaar willen uitproberen. Voor iedere nieuwe opstelling is een halve minuut nodig. Om gezondheidsredenen mogen ze niet langer dan acht uur per dag doorgaan.
Voetbaltrainer
Een voetbaltrainer kan bijna \(40\) miljoen opstellingen maken met zijn elf basisspelers.
Het arrangement Rangschikken en faculteiten is gemaakt met
Wikiwijs van
Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt,
maakt en deelt.
Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:
het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
voor alle doeleinden, inclusief commerciële doeleinden.
Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten
terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI
koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI
koppeling aan te gaan.
Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.
Arrangement
IMSCC package
Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.
Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en
het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op
onze Developers Wiki.