Thema: Symmetrie - 2V
Inleiding
Kirigami, de kunst van vouwen en knippen
Door te knippen in een gevouwen vel papier kun je je mooie patronen laten ontstaan. Heb je als kind ooit tafellakentjes of sneeuwvlokken geknipt op deze manier?
Deze vorm van origami heet Kirigami. In deze opdrachten ervaar je de mogelijkheden van deze origami-vorm.
Opdracht 1
Vouw een vierkant vel papier diagonaal doormidden. Vouw nu de ontstane driehoek weer doormidden.
Knip de punt van de driehoek af,
zoals in de figuur hiernaast.
Als je het papier openvouwt, zul je zien dat er een
vierkant in het midden is ontstaan door het afknippen
van de vouwpunt.
Opdracht 2
Probeer nevenstaande vormen te maken door te vouwen en maar één keer te knippen.
Open opdracht 3
Ga al vouwend en knippend op zoek naar een nieuw patroon van vierkantjes.
Zie je een verband tussen het aantal vierkantjes dat is ontstaan en het aantal vouwen dat je gemaakt hebt?
Wat kan ik straks?
Aan het einde van dit thema kan je:
- uitleggen wat spiegelsymmetrie is
- de spiegelassen van een figuur bepalen
- het spiegelbeeld tekenen van een figuur in een spiegelas
- uitleggen wat schuifsymmetrie is
- uitleggen wat draaisymmetrie is
- de orde van een draaisymmetrisch figuur bepalen
- van een draaisymmetrisch figuur de draaihoek en het draaipunt bepalen en de gedraaide figuur tekenen
- bepalen of twee figuren direct of indirect congruent zijn
- uitleggen wat puntsymmetrie is
- de symmetriesoort en orde bepalen van een vlakvulling
- spiegelsymmetrie en draaisymmetrie herkennen in ruimtelijke vormen
Wat kan ik al?
Bij symmetrische figuren is er altijd sprake van een zekere gelijkheid in de figuur: de figuur is opgebouwd uit gelijke delen.
Er zijn verschillende vormen van symmetrie. In dit thema kijken we naar drie soorten:
- spiegelsymmetrie,
- schuifsymmetrie en
- draaisymmetrie.
Door goed naar deze drie woorden te kijken, begrijp je misschien al wat ermee bedoeld wordt.
Hieronder volgt een korte test waarmee je kunt laten zien wat je al weet. Het geeft niet of je sommige vragen nog niet direct kunt.
Toets: Wat kan of weet ik al?
Start
Wat ga ik doen?
Het thema Symmetrie bestaat uit de volgende onderdelen:
Onderdeel |
Tijd in lesuren |
Start |
Inleiding |
0,5 uur |
|
Wat kan ik straks? |
|
Wat kan ik al? |
|
Wat ga ik doen? |
Paragrafen |
Spiegelsymmetrie |
2,5 uur |
|
Schuifsymmetrie |
1 uur |
|
Draaisymmetrie |
4 uur |
|
Vlakvullingen |
0,5 uur |
|
Symmetrie in de ruimte |
1 uur |
Afsluiting |
Samenvatting |
|
|
Thema-opdracht |
2 uur |
|
Diagnostische toets |
0,5 uur |
|
Extra opgaven |
0,5 uur |
|
Terugblik |
|
Totaal |
12,5 uur |
Gewone opgaven en Super opgaven
Voor een aantal opgaven in dit hoofdstuk is een Super variant beschikbaar.
Die Super variant is wel wat moeilijker.
Let op: Je hoeft dan niet ook de 'normale' variant te maken.
Je herkent de opgaven waar een Super variant van is aan dit teken
Als je op dit teken klikt, dan ga je naar de Super variant.
In de Super variant staat dit teken
Als je daarop klikt, ga je weer terug naar de gewone opgave.
De Super opgaven staan ook steeds bij elkaar onder aan iedere paragraaf.
Paragrafen
In dit thema gaan we aan de slag met de verschillende vormen van symmetrie.
In de volgende paragrafen leer je dit stap voor stap. Vervolgens pas je symmetrie toe in vlakvullingen en maken we een uitstapje naar symmetrie in de ruimte.
Paragraaf 5 Symmetrie in de ruimte
Afsluiting
Samenvatting
Drie soorten symmetrie
|
|
|
Spiegelsymmetrie |
Schuifsymmetrie |
Draaisymmetrie |
vouwen
|
randversiering
|
rozetten
|
spiegeltje
|
overtrekpapier
|
overtrekpapier
|
|
|
|
Spiegelsymmetrie
Een figuur is spiegelsymmetrisch als hij een symmetrieas (=spiegelas) heeft: de delen aan weerszijden van de spiegelas passen precies op elkaar.
De spiegelas is middelloodlijn van het lijnstuk tussen een punt en zijn spiegelbeeld.
Je vindt het spiegelbeeld door
-
vouwen
-
spiegeltje
-
met geodriehoek
Draaisymmetrie
Een figuur is draaisymmetrisch als hij is opgebouwd door een deel te draaien om een punt. Na een aantal keer draaien is het deel weer op zijn uitgangspositie terug.
Dat aantal is de orde van draaisymmetrie. Het punt waarom je draait is het draaipunt.
We zoeken de kleinste draaihoek die de figuur op zichzelf afbeeldt. De orde is gelijk aan \(360°\) gedeeld door die kleinste draaihoek.
Als je een pijl draait om een punt over een hoek van \(a°\), dan maken de beeldpijl en de originele pijl ook een hoek van \(a°\) met elkaar.
Schuifsymmetrie
Een figuur is schuifsymmetrisch als hij is opgebouwd als herhaling van eenzelfde deel.
Als je dat deel steeds over eenzelfde pijl verschuift, krijg je de hele figuur.
Bij een schuifsymmetrische figuur zoeken we altijd een zo klein mogelijk deel en een zo kort mogelijke pijl voor de verschuiving.
Puntsymmetrie
Een figuur is puntsymmetrisch als hij is opgebouwd door een deel te spiegelen in een punt, het zogenaamde symmetriepunt.
De figuur is dan ook puntsymmetrisch: het symmetriepunt is een draaipunt van de figuur van orde \(\small 2\).
Patronen
- stroken
- rozetten
- vlakvullingen
Symmetrie in de ruimte
|
|
Spiegelsymmetrische vormen in de ruimte hebben een symmetrievlak. |
Draaisymmetrische vormen in de ruimte hebben een draaias. Een draaias heeft een orde van draaisymmetrie. |
Thema-opdracht
In deze opdracht gaan jullie aan de slag met het combineren van symmetrievormen. Jullie gaan je verdiepen in patronen die je kan maken met één tegel.
Diagnostische toets
Je gaat nu een aantal gevarieerde opgaven maken waarin je kunt laten zien of je de geleerde stof uit de voorgaande paragrafen beheerst.
Dit zijn voorbeeldopgaven die een goed beeld geven van de opgaven die in een eindtoets over dit thema 'hoeken' voor kunnen komen.
Als je een score van 70% haalt, heb je een voldoende.
Bij deze toets hoort een werkblad ; die moet je eerst afdrukken.
Toets: Diagnostische toets Symmetrie
Start
Extra opgaven
Je ziet hier twee Extra oefeningen. Je hoeft er maar één te doen.
- Extra oefening Basis is bedoeld voor leerlingen die de Diagnostische toets NIET goed gemaakt hebben.
- Extra oefening Plus is bedoeld voor de leerlingen die de Diagnostische toets WEL goed gemaakt hebben.
Je moet dus sowieso eerst de Diagostische toets af hebben vóórdat je aan de Extra oefening begint.
Vraag bij twijfel aan je docent wat je moet doen.
Toets: Extra oefening Basis
Start
Toets: Extra oefening Plus
Start
Terugblik
Reflectie op leerdoelen en op het proces. Wat ging goed, wat ging minder goed.
Heb ik mijn eigen planning gehaald?
Evaluatie: Terugblik
Start