Omtrek en Oppervlakte

Omtrek en Oppervlakte

Omtrek

De omtrek is de afstand om een voorwerp heen.
Kijk eens naar het figuur hieronder.

Figuur 1
Figuur 1

Dit figuur is een vierkant met zijden van 5 cm.
Als je de omtrek wilt berekenen, doe je bij alle rechthoekige figuren hetzelfde namelijk alle zijden bij elkaar optrekken.
Doe je dit bij dit figuur krijg je 5 + 5 + 5 + 5 = 20 cm.

Bij een cirkelvormig figuur werkt het anders.
Je hebt hier te maken met  het teken π (pi). Het π-teken is een getal met oneindige cijfers achter de komma.
We ronden dit getal altijd af op 3,14. Dit getal geeft de verhouding weer tussen de omtrek en de diameter in een cirkel.
De diameter wordt gegeven, tenzij de straal wordt gegeven. De straal is een rechte lijn tot het midden en altijd de helft van de diameter.
Hieronder zie je een cirkel.

Figuur 2
Figuur 2

Om de omtrek te  bereken, heb je dus de diameter en het π-teken nodig.
Vermenigvuldig de diameter met het π-teken en je krijgt de omtrek van de cirkel.
Is de straal in plaats van de diameter gegeven, dan vermenigvuldig je het π-teken met 2 x de straal.

Oppervlakte

Oppervlakte is niet alleen de omtrek maar ook alles wat daarbinnen zit als je van bovenaf kijkt.
Oppervlakte is 2-dimensionaal, dit houdt dan ook in dat er een verhouding is tussen de lengte en breedte en dat de oppervlakte in vierkante centimeters wordt gegeven. Dit schrijf je als cm2.

Kijk eens naar het figuur hieronder.

Figuur 5
Figuur 5

Het gearceerde oppervlakte doet hierbij ook aan mee.
De verhouding is 5 bij 5. Om een oppervlakte te willen weten, vermenigvuldig je de lengte een de breedte bij een figuur.
In dit figuur doe je 5 x 5 = 25 cm2.

De oppervlakte van dit figuur is dus 25 cm2.

 

Het kan ook zijn dat je de oppervlakte van een driehoek wil berekenen.
Je hebt een rechthoekige driehoek nodig, zoals hieronder.

Figuur 7
Figuur 7

Deze driehoek heeft een hoogte van 5 cm en een breedte van 3 cm.
Een driehoek is de helft van een vierkant. Bij de vierkant deed je de lengte x de breedte.
Bij een driehoek vervang je de lengte door de hoogte.
De helft van iets is hetzelfde als vermenigvuldigen met een 1/2.
Om de oppervlakte van een driehoek te bepalen, vermenivuldig je een half met de hoogte x de breedte. We doen altijd als eerste de hoogte x de breedte daarna pas de helft ervan. Daarom zetten we haakjes om de hoogte x de breedte.
Als we de oppervlakte berekenen van de driehoek hierboven, krijgen we 1/2 x (5x3) = 1/2 x 15 = 7,5 cm2.

De oppervlakte van de driehoek is dus 7,5 cm2.

 

Bij een cirkel gebruik je een andere formule.
Bij het berekenen van de omtrek gebruikte je de diameter, maar voor de oppervlakte gebruik je de straal. De straal is de helft van de diameter.
Omdat we te maken hebben met een cirkel gebruiken we weer het π-teken.
We zijn hier weer bezig met een verhouding dus het π-teken moet worden vermenigvuldig met 2x de straal. Je zou ook kunnen dat je de straal (r) in het kwadraat doet (r2). Als je een getal in het kwadraat doet, vermenigvuldig je het getal met zichzelf.
Kijk eens naar de cirkel hieronder.

Figuur 6
Figuur 6

Als je de oppervlakte wilt berekenen, moet je het blauw gearceeerde deel weten dus de binnenkant van de cirkel van bovenaf.
De diameter is in dit geval 4 cm, dan is de straal 4/2=2 cm.
De straal doe je in het kwadraat en vermenigvuldig je daarna met het π-teken.
Dus 22 x π = 2x2 x π = 4π cm2. Je mag het π-teken laten staan, tenzij er wordt gevraagd om het antwoord in decimalen te noteren.

De oppervlakte van de cirkel is dus 4π cm2.

 

Ook kun je de oppervlakte van een bol bereken.
Hierbij doe je hetzelfde als bij de cirkel, maar vermenigvuldig je nog met 4.
Dus je vermenigvuldigt 4 met het π-teken dit vermenigvuldig je met de straal in het kwadraat.
De formule luidt dus 4 x π x r2. Gebruiken we de diameter van de cirkel hierboven dus 4 dan krijgen we voor de oppervlakte van een bol 4xπx(4/2)2 = 16π cm.
De oppervlakte van de bol wordt dan dus 16π cm2 . Ook hier mag je het π-teken laten staan.

 

Ten slot kun je nog de oppervlakte berekenen van een cilinder.
Hierbij bereken je de omtrek van het grondvlak, dus van een cirkel, en vermenigvuldig je daarna met de hoogte.
Kijk eens naar het figuur hieronder.

 

Figuur 8
Figuur 8

Stel de diameter van de het cirkel aan de bovenkant is 8 cm.
Dan is de omtrek van de bovenkant 2 x (8/2) x π = 2x4 x π = 8π cm.
Om de oppervlakte te weten van dit figuur moet je de omtrek vermenigvuldigen met de hoogte.
Als de hoogte bij dit figuur 20 cm is. Dan is de oppervlakte van dit figuur 8π x 20 = 160π cm 2.

De oppervlakte van de cilinder is dus 160π cm2.

  • Het arrangement Omtrek en Oppervlakte is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Auteur
    Judith Korte Je moet eerst inloggen om feedback aan de auteur te kunnen geven.
    Laatst gewijzigd
    2018-11-05 14:12:59
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding 4.0 Internationale licentie.

    Voor een andere uitleg kijk eens hierop.

    https://www.beterrekenen.nl/website/index.php?pag=236

    https://www.beterrekenen.nl/website/index.php?pag=237

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    In deze les leer je wat de wiskundige termen omtrek en oppervlakte zijn , waarvoor je ze gebruikt en hoe je ze kan gebruiken. Deze les is bedoeld voor havo/vwo 1 leerlingen.
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Trefwoorden
    omtrek en oppervlakte, ruimtelijke figuren
  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.