Goniometrie

Goniometrie

Welkom

Welkom op de pagina voor goniometrie. Op deze pagina kun je kenissclips, theorie, oefentoetsen en nog veel meer vinden wat betreft goniometrie.

Onder het kopje 'Theorie' vindt je de theorie van de desbetreffende paragraaf. in deze hoofdstuk gaat het voornamelijk om sinus, cosinus en de tangens. Onder het kopje 'kennisclips' zal er theorie uitgelegd worden over de desbetreffende paragraaf.

Lesdoelen

  • Je kunt de hoeken berekenen met de sinus, cosinus en de tangens.
  • Je kunt de zijden berekenen met de sinus, cosinus en de tangens.

Elke paragraaf sluit af met een aantal opdrachten. Onder het kopje 'Test jezelf' kan je je kennis tesen door een proeftoets te maken. Als je deze goed heb kunnen maken kan je de eindtoets maken die vindt je onder het kopje 'Eindtoets'. Als je deze met een voldoende afsluit heb je de doelen behaald.

 

Veel succes!

 

 

Theorie

Ezelbruggetje (SOS, CAS en TOA)

Sinus, cosinus en tangens worden goniometrische verhoudingen genoemd.

Met het volgende ezelsbruggetje is gemakkelijk te onthouden wat de formules voor sinus, cosinus en tangens zijn.

Om dit allemaal wat makkelijker te onthouden is het ezelsbruggetje SOS - CAS - TOA misschien handig.
SOS van "Sinus-Overstaand-Schuin", CAS van "Cosinus-Aanliggend-Schuin" en TOA van "Tangens-Overstaand-Aanliggend".
Zeg nu eerst om te oefenen 20 keer hardop dit ezelsbruggetje.

 

Sinus en Cosinus

Als je er niet uitkomt welke goniometrische verhouding moet gebruiken volg dat de stappen die hieronder staan.

Stap 1  Kijk wat de schuine zijde van de driehoek is. Dat is natuurlijk de langste, maar als je dat niet goed kunt zien, kun je het veiligst gebruiken dat het degene tegenover de rechte hoek is.

Stap 2 Beslis om welke hoek het gaat. Dus de hoek die je wilt berekenen of een hoek die gegeven is (als je een lengte wilt berekenen).

Stap 3  De schuine zijde heb je al. Dan zijn er nog twee rechthoekszijden over. Degene daarvan die aan jouw hoek vastzit noem je de aanliggende rechthoekszijde, en degene tegenover jouw hoek heet de overstaande rechthoekszijde.

 

 

Voorbeeld 1

Bereken het vraagteken in de driehoek hiernaast.
Het gaat om de hoek van 62º. De schuine zijde is die met het vraagteken (tegenover de rechte hoek). De zijde van 7 is dan de overstaande zijde (tegenover de hoek van 62º)
Het gaat dus om de schuine en de overstaande zijden, dus gebruiken we SOS.
sin(62º) = 7/?  dus  ? = 7/sin(62) ≈ 7,93

 

 

 

 

 

Voorbeeld 2
Bereken het vraagteken in de driehoek hiernaast.
De zijde van 7 is de schuine zijde (tegenover de rechte hoek). Het gaat om de hoek met het vraagteken dus de zijde van 4 is dan de aanliggende zijde.
Met aanliggend en schuin gebruiken we CAS.
cos(?) = 4/7  dus  ? = cos-1 (4/7) ≈   55,2º

Tangens

Een rechthoekige driehoek bestaat uit 2 rechthoekszijden. Een rechthoekige driehoek heeft precies 1 rechte hoek van 90 graden (zie ∠A). De beide rechthoekszijden vormen de rechte hoek. Zijde BC is de langste zijde. Deze noemen we ook wel de schuine zijde. Zijde AC is de overstaande rechthoekszijde van (hoek) ∠B. Zijde AB is de aanliggende rechthoekszijde van ∠B. Met de tangens kun je de zijden en hoeken berekenen in een rechthoekige driehoek De tangens is altijd de uitkomst van een deling. De deling is de verhouding van 2 zijden. Je schrijft tangens kortweg tan. Als ezelsbruggetje gebruiken we tan = O/A (denk aan SOS CAS TOA). Om de hoek te bereken in graden gebruik je op je rekenmachine tan-1.

 

Voorbeeld 1: hoek berekenen met de tangens. Gegeven driehoek KLM (afb. 2). Bereken tan ∠K en bereken ∠K in graden.

Uitwerking:
tan(∠K) = overstaande rechthoekszijde / aanliggende rechthoekszijde = LM / KL = 6,1/4,4 ≈ 1,386
Om de hoek in graden te berekenen, nemen we de tan-1, hieruit volgt:
∠K = tan-1(LM/KL) = tan-1(1,386) ≈ 54º

 

Voorbeeld 2: zijde berekenen met de tangens. Gegeven driehoek ABC (afb. 3). Bereken hoogte BC.

Uitwerking:
tan(∠A) = overstaande rechthoekszijde / aanliggende rechthoekszijde = BC / AC
Invullen wat je weet, levert:
tan(42º) = BC / 115
⇒ BC = tan(42º) x 115 ≈ 103,55 meter

 

Kennisclipje

Test Jezelf

Oefening: Goniometrie

Start

Eindtoets

Toets: Goniometrie

Start

  • Het arrangement Goniometrie is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Auteur
    qasim choudry Je moet eerst inloggen om feedback aan de auteur te kunnen geven.
    Laatst gewijzigd
    2018-04-14 10:55:12
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    de leerlingen kunnen de hoeken berekenen met de sinus, cosinus en de tangens. De leerlingen kunnen de zijden berekenen met de sinus, cosinus en de tangens.
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten
  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    Oefeningen en toetsen

    Goniometrie

    Goniometrie

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    QTI

    Oefeningen en toetsen van dit arrangement kun je ook downloaden als QTI. Dit bestaat uit een ZIP bestand dat alle informatie bevat over de specifieke oefening of toets; volgorde van de vragen, afbeeldingen, te behalen punten, etc. Omgevingen met een QTI player kunnen QTI afspelen.

    Versie 2.1 (NL)

    Versie 3.0 bèta

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.