De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
Grafieken die een rechte lijn zijn noem je lineaire grafieken.
In deze paragraaf ga je kijken wanneer deze grafieken gelijk zijn aan elkaar. Dit noemen we een lineaire vergelijking. Je leert een oplossing te vinden uit lineaire grafieken.
Voorbeeld:
In het assenstelsel zie je twee grafieken.
Bij grafiek I hoort de formule: uitkomst = 3 x getal – 4
Bij grafiek II hoort de formule: uitkomst = -2 x getal + 6
Als je naar de grafieken kijkt, zie je dat bij het getal 2 de grafieken elkaar snijden in het punt (2,2). Daar zijn de grafieken gelijk aan elkaar. Als je voor getal 2 invoert in de fomules is bij beide de uitkomst 2.
Voor de opgaven heb je een werkblad nodig. Deze krijg je van de docent.
Opgaven
1 Twee verschillende klusbedrijven gebruiken verschillende formules voor het berekenen van de
kosten voor een
reparatie:
I kosten in € = 25a
II kosten in € = 12,5a + 50
Hier is a het aantal uur.
Lees uit de grafiek de oplossing af. (De oplossing is het getal dat je in de formule invoert, de uitkomst is dan hetzelde)
2 Twee installatiebedrijven berekenen hun prijzen met de volgende formules:
Bedrijf A: p = 25 + 25t
Bedrijf B: p = 60 + 20t
t is de tijd in uren en p is de prijs in euro’s.
a Vul de tabel in op het werkblad:
t
0
2
4
6
8
Bedrijf A p
...
...
...
...
...
Bedrijf B p
...
...
...
...
...
b Teken in het assenstelsel op het werkblad beide grafieken.
c Wat is de oplossing van deze vergelijking?
d Wat is de betekenis van de oplossing?
3 Piet en Karel hebben allebei een baantje. Ze verdienen hun geld volgens de volgende formules:
Piet: bedrag = 20 + 25d
Karel: bedrag = 30 + 20d
d is het aantal dagen
a Vul de tabel op het werkblad in.
b Teken op het werkblad beide grafieken.
c Wie verdient er na 2 dagen het meest?
d Op welke dag verdienenen ze evenveel?
4 Suzan en Maaike gaan beiden naar een verschillend zwembad. Ze hebben beiden een abonnement volgens de
volgende formules:
Abonnement Suzan: kosten in euro's = 15 + 2,50a
Abonnement Maaike: Kosten in euro's = 20 + 1,50a
a = het aantal keer naar het zwembad
a Vul de tabel op het werkblad in.
b Teken de grafieken op het werkblad.
c Wat is de oplossing van deze vergelijking?
d Wat betekent deze oplossing?
Maak ook de extra oefeningen bij 2.1 Stencil krijg je van je docent.
Voor het oplossen van een vergelijking kan je ook inklemmen gebruiken. Je gaat steeds een getal invullen en kijken of er het goede antwoord uit komt.
Voorbeeld:
Piet berekent zijn verdiensten met de verkoop van appels volgens de volgende formule:
Verdiensten in euro = 2 + 0,10 x aantal appels
Piet verdient op een ochtend 11 euro.
De vraag is dan natuurlijk: hoeveel appels heeft hij dan verkocht?
De vergelijking die hier bij hoort is: €11 = 2 + 0,10 x aantal appels
In een vergelijking vul je dus nog niet het antwoord in!!
De oplossing van deze vergelijking is het aantal appels dat hij verkocht heeft en daar dus €11 mee verdient.
Oplossen met inklemmen is een getal invullen en doorgaan totdat je de oplossing gevonden hebt. En dit noteer je netjes onder elkaar.
(10) 2 + 0,10 x 10 = 3 euro (dit is nog veel te weinig).
(50) 2 + 0,10 x 50 = 7 euro (dit is nog te weinig).
(100) 2 + 0,10 x 100 = 12 euro (dit is te veel)
(90) 2 + 0,10 x 90 = 11 euro (dit is het goede antwoord)
Het goede antwoord is 90 appels.
Het ingevulde bedrag moet ingeklemd zijn tussen 2 andere bedragen. Je vult in dit geval 89 en 91 ook in.
(89) 2+ 0,10 x 89 = 10,90 euro
(90) 2 + 0,10 x 90 = 11 euro
(91) 2 + 0,10 x 91 = 11,10 euro
Het goede antwoord zit nu 'ingeklemd' tussen 2 andere uitkomsten. Schrijf bij oplossen met inklemmen dus altijd drie pogingen op!
Instructievideo:
Opgaven
1. Pedro werkt bij de brandweer. Hij krijgt per uur zijn loon betaald. De formule die hier bij hoort is:
Verdiensten in euro = 5 + 15 x aantal gewerkte uren
Pedro verdient op een dag €140.
Bereken met inklemmen hoeveel uur Pedro heeft gewerkt??
Schrijf eerst de vergelijking op die hier bij hoort en ga dan op zoek naar de oplossing door middel van inklemmen.
2. Jan verkoopt kaartjes voor een voetbalwedstrijd. Per kaartje maakt hij 40 eurocent winst. Hij maakt winst volgens de formule:
winst in euro = 2 + 0,40k.
k = het aantal kaartjes
Bereken met inklemmen hoeveel kaartjes Jan moet verkopen, zodat de winst 28 euro is.
Schrijf eerst de vergelijking op die hier bij hoort.
3. Los de vergelijkingen op met inklemmen:
a 300 - 1,5t = 150
b 25 + 5t = 275
c 0,65 + 0,15t = 3,95
4. Bart kweekt tomaten op zijn boerderij. Hij krijgt 200 tomaten per jaar van zijn buurman. Zelf kweekt hij tomaten
volgens de formule:
Totaal aantal tomaten per jaar = 200 + 16t
t = tijd in maanden
Hoeveel maanden moet Bart tomaten kweken, zodat hij op een totaal aantal van 792 tomaten komt?
Schrijf eerst de vergelijking op die hier bij hoort.
2.3 Oplossen met de balansmethode
Een balans is in evenwicht.
Als je van beide kanten van de balans hetzelfde weghaalt, blijft de balans in evenwicht.
Oplossen vergelijking met balansmethode:
Hieronder zie je een balans.
Links liggen 2 tomaten en een gewicht van 1kg. Rechts liggen 4 gewichten van 1kg.
Bij de balans hoort de vergelijking:
2g + 1 = 4 (g = gewicht van tomaat)
Bekijk de volgende stappen om te zien hoe je de
vergelijking kunt oplossen.
Controle:
Vul 1,5 in voor r in de vergelijking.
2 x 1,5 + 1 = 4
3 + 1 = 4
4 = 4
Aan beide kanten is het in balans. Dus het antwoord klopt.
Instructievideo 1:
Instructievideo 2:
opgaven
1 Los op met de balansmethode:
a 3x + 7 = 28
b 4t + 9 = 53
c 2b + 3 = 11
d 5 + 4x = 39
e 12 + 3b = 15
f 2a - 8 = 20
g 3b - 7 = 41
h 100 - 9y = 1
2 Henk laat een bad vollopen met water volgens de formule:
Hoogte water in cm = 3 + 2t
t = tijd in minuten
Na hoeveel minuten is de hoogte van het water 25 cm? Stel de vergelijking op en los op met de
balansmethode.
2.4 D- toets
Hoofdstuk 3: Pythagoras
3.1 Kwadraten en wortels
Kwadraten
Als je een getal in het kwadraat zet, betekent dit dat je het getal met zichzelf vermenigvuldigd.
Bijvoorbeeld:
1² = 1 × 1 = 1
3² = 3 × 3 = 9
12² = 12 × 12 = 144
(−3)² = (−3) × (−3) = 9
Rekenmachine
Reken op de rekenmachine het kwadraat van 6,3 uit. Dit doe je als volgt:
6,3 [x²] [=]. Controleer met je rekenmachine dat er 39,69 uit komt.
Wortels
Het tegenovergestelde van kwadrateren is wortel trekken.
Voorbeelden:
Rekenmachine
Reken op de rekenmachine de wortel van 8 uit. Dit doe je als volgt:
[√] 8 [=]. Controleer met je rekenmachine dat er 2,83 uit komt.
Opgaven
1 Bereken zonder rekenmachine.
a 22
b 52
c 92
d 102
e 202
2 Bereken met rekenmachine. Rond zo nodig af op 2 decimalen.
a 212
b 422
c 9,32
d 5,122
e 0,52
3 Bereken. Rond zo nodig af op 2 decimalen.
a \(\sqrt{16}\)
b \(\sqrt{225}\)
c \(\sqrt{6,25} \)
d \(\sqrt{10}\)
e \(\sqrt{78}\)
4 De oppervlakte van een vierkant is 36. Wat is de lengte van de zijde?
5 Vul in:
a ...2 = 81
b ...2 = 121
c ...2 = 144
d ...2 = 36
3.2 Machten
Een macht in de wiskunde bestaat uit een grondtal en een exponent. Zie plaatje hieronder:
Berekening:
53 = 5 x 5 x 5 = 125
Nog meer voorbeelden:
34 = 3 x 3 x 3 x 3 = 81
55 = 5 x 5 x 5 x 5 x 5 = 3125
0,63 = 0,6 x 0,6 x 0,6 = 0,216
Rekenmachine
Reken op de rekenmachine 46 uit. Dit doe je als volgt:
4 [^] 6 [=]. Controleer met je rekenmachine dat er 4096 uit komt.
Instructievideo:
Opgaven
1 Reken uit zonder rekenmachine:
a 23
b 33
c 53
d 104
e 17
f 120
2 Bereken op de rekenmachine:
a 114
b 1,83
c 0,77
d 85
e 6,312
f 5,74
3.3 Rechthoekige driehoeken
Een rechthoekige driehoek is een driehoek met daarin een rechte hoek. Deze hoek is 90°.
Hieronder staat een rechthoekige driehoek.
De rechthoekige driehoek heeft 2 rechthoekzijden. Dit zijn de zijden die een rechte hoek maken met elkaar. Dit zijn de korte zijden van de driehoek.
Delangste zijde zit tegenover de rechte hoek, dit is de zijde die niet vast zit aan de rechte hoek. De langste zijde wordt ook wel schuine zijde genoemd.
Zorg ervoor dat je beide benamingen kent van de zijden!!
Opgaven
1 Schrijf van de onderstaande driehoeken hoek op waar de rechte hoek zich bevind.
2
Schrijf van de rechthoekige driehoeken van opgave 1 de korte zijden op.
3
a Teken in je uitwerkingenschrift de punten P(2,5), Q(6,1) en R(2,1) in een assenstelsel.
b Teken de ∆PQR.
c Welke zijde is de langste zijde van de driehoek.
d Hoe lang zijn de twee korte zijden van de driehoek.
4 Hieronder zie je een figuur.
a Welke 4 rechthoekige driehoeken zie je in de figuur hierboven?
Schrijf de namen van deze driehoeken op onder elkaar. (De naam van een driehoek bestaat uit de drie hoekpunten, beginnend met de eerste letter uit het alfabet en dan teken de klok in, verder geschreven)
b Schrijf achter elke driehoek de schuine zijde op van die driehoek
c Schrijf daar weer achter de rechthoekszijden op van die driehoek.
3.4 De stelling van Pythagoras
Berekenen van de langste zijde.
Van driehoek ABC is hoek A = 90°, AB = 5 en AC = 12.
Hoe lang is zijde BC?
Berekenen van de korte zijde.
Van driehoek PQR is hoek Q = 90°, QR = 3 en PR = 7.
Hoe lan is zijde PQ?
Opgaven
1 Je ziet hieronder driehoek ABC.
Hoek B = 90°. AB = 6 en BC = 8.
Gebruik het schema om zijde AC uit te rekenen.
2 Je ziet driehoek ABC.
Hoek B = 90°. AB = 4 en AC = 6.
Gebruik het schema hieronder om zijde BC uit te rekenen.
Rond af op twee cijfers achter de komma.
3 Bereken van de volgende rechthoekige driehoeken de lengte van de zijde met het vraagteken.
4
a Teken in je schrift een assenstelsel met daarin de punten A(1, 1) en B(7, 5).
b Teken punt P(7, 1) en teken driehoek APB.
c Bereken met behulp van de stelling van Pythagoras de lengte van lijnstuk AB.
3.5 De stelling van Pythagoras gebruiken
Pythagoras kan je bij veel dingen toepassen. Je kan bijvoorbeeld uitzoeken of een driehoek rechthoekig is.
Voorbeeld
Zoek voor de onderstaande driehoek uit of deze rechthoekig is. Dit doen we door de stelling van Pythagoras te gebruiken.
Er komt voor AC 9,4 uit. Voor AC moest er eigenlijk 9,7 uit komen. Dit komt dus niet overeen. Dat betekent dat driehoek ABC geen rechthoekige driehoek is.
Opgaven
1 Je ziet een driehoek ABC met zijden 11, 24 en 26.
Je wilt uitzoeken of de driehoek rechthoekig is.
a Als de driehoek rechthoekig is, welke zijde is dan de langste zijde?
En welke hoek is dan de rechte hoek?
b Zoek uit met de stelling van Pythagoras of driehoek ABC rechthoekig is.
2 Bekijk de tent hieronder.
De tent is 2 m breed en 1,2 m hoog.
Bereken hoe lang de het schuine gedeelte is.
Rond je antwoord af op één decimaal achter de komma.
3 Bekijk de berg Hieronder.
Controleer of de berg de vorm heeft van een rechthoekige driehoek.
4 Bekijk de achtbaan hieronder.
Bereken de lengte van het stijgende stuk van de achtbaan. Rond je antwoord af op één decimaal achter de komma.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
a. Teken in een assenstelsel de punten A(1, 1) en B(7, 5).
b. Teken punt P(7, 1) en teken driehoek APB.
c. Bereken met behulp van de stelling van Pythagoras de lengte van lijnstuk AB.
3. Bereken van de volgende rechthoekige driehoeken de lengte van de zijde met het vraagteken.
4. Bereken de hoogte van de boom.
5.
a. Bereken zijde AD. Rond af op 1 decimaal.
b. Bereken zijde CD. Rond af op 1 decimaal.
6. Hieronder zie je een tent. Joris is 1,70 m. Kan hij zonder te bukken in de tent staan?
7. Bereken de lengte CF. Rond af op 1 decimaal.
Hoofdstuk 4: Statistiek
4.1 Procentberekeningen
Procenten: een percentage uitrekenen
Vaak moet je een percentage uitrekenen. Dat kan op verschillende manieren.
Voorbeeld
Je wilt uitrekenen hoeveel 24% van 750 is.
Manier 1
Schrijf het percentage als een vermenigvuldigingsfactor: 24% = 0,24
Voer de vermenigvuldiging uit: 0,24 × 750 = 180
Dus 24% van 750 is 180
Manier 2
Reken eerst 1% uit: 1% van 750 is 750 : 100 = 7,5
Reken dan 24% uit: 24% van 750 is 24 × 7,5 = 180
Procenten: hoeveel procent is het?
Soms wil je weten hoeveel procent iets is.
Voorbeeld
Het inkomen van een gezin is € 2200,- per maand.
Het gezin geeft per maand € 750,- uit aan huisvesting.
Hoeveel procent is dat?
750 van de 2200 is 750/2200 deel
750/2200 x 100 = 34%
Dus het gezin geeft ongeveer 34% van haar inkomen uit aan huisvesting
Procenten: erbij en eraf
Soms verandert de prijs van een artikel met een bepaald percentage.
Je wilt dan de nieuwe prijs kunnen uitrekenen.
Voorbeeld 1
Een televisietoestel van € 320,- wordt 15% duurder.
15% van 320 = 0,15 × 320 = 48
de nieuwe prijs is € 320,- + € 48,- = € 368,-
Voorbeeld 2
In 2010 maakte een schildersbedrijf € 110.000 winst.
In 2011 was de winst 8% lager.
8% van 110000 = 0,08 × 110000 = 8800
de winst in 2011 was € 110.000 – € 8.800 = € 101.200
Maak nu de opgaven 1 t/m 10 van het stencil bij Hoofdstuk 4
4.2 Centrummaten
Centrummaten bestaat uit gemiddelde, mediaan en modus.
Gemiddelde:
Dit noemen we het gewogen gemiddelde, omdat elk cijfer een ander weging heeft.
Mediaan:
Modus:
Maak nu de opgaven 11 t/m 20 van het stencil bij hoofdstuk 4.
4.3 Beelddiagram en staafdiagram
Beeld- en staafdiagram
Voorbeeld 1:
Gegevens kun je op verschillende manieren weergeven.
Voorbeelden zijn een tabel, een beelddiagram en een staafdiagram.
Een klas van 30 leerlingen heeft een toets wiskunde gemaakt.
Met de resultaten is een tabel, een beelddiagram en een staafdiagram gemaakt
Voorbeeld 2:
Aan 30 jongeren tussen de 12 en 14 jaar is gevraagd hoe zij aan geld komen.
De antwoorden zijn verwerkt in een tabel.
Tel het totaal aantal antwoorden in de tabel. Het aantal antwoorden is groter dan 30. Kan dat? Ja dat kan. Dat betekent dat een aantal jongeren op meer dan één manier aan geld komt.
Bij de tabel is een beelddiagram gemaakt.
Achter zakgeld staan 10 poppetjes getekend. Ieder poppetje stelt 2 jongeren voor.
Maak nu de opgaven 21 t/m 26 van het stencil bij Hoofdstuk 4.
Links van de steel staan de tientallen en rechts de eenheden.
Maak nu de opgaven 27 t/m 33 van het stencil bij Hoofdstuk 4.
4.5 Cirkeldiagram
- Cirkeldiagram lezen
Aan 200 mensen is gevraagd wat hun favoriete sport is.
Hun antwoorden zijn verwerkt in een cirkeldiagram.
Je ziet dat 60% van de ondervraagden gekozen heeft voor voetbal.
60% = 0.6
60% van 200 mensen is 0,6 × 200 = 120
Dus van 120 mensen is voetbal de favoriete sport.
- Cirkeldiagram tekenen
Stap 1: bereken de percentages
Stap 2: bereken de hoeken
Stap 3: teken het cirkeldiagram.
Voorbeeld
25 personen doen aan sport. 10 personen doen voetbal, 8 personen doen tennis, 6 personen doen hockey en 1 persoon doet handbal. De sporten zijn de Sectoren.
In de tabel hieronder staat het weergegeven.
Sport
Voetbal
Tennis
Hockey
Handbal
Totaal
Aantal
10
8
6
1
25
Procenten
Hoek
Stap 1: bereken de percentages.
10 : 25 x 100 = 40%
8 : 25 x 100 = 32%
6 : 25 x 100 = 24%
1 : 25 x 100 = 4%
Dit zetten we in de tabel:
Sport
Voetbal
Tennis
Hockey
Handbal
Totaal
Aantal
10
8
6
1
25
Procenten
40
32
24
4
100
Hoek
Stap 2: bereken de hoeken.
De hoeken kan je berekenen door de percentages x 3,6 te doen.
Stap 3: teken het cirkeldiagram.
Teken een straal omhoog in de cirkel.
Teken de hoek van 144° en zet het percentage er in. Dit is de eerste sector.
Teken de andere hoeken.
Het cirkeldiagram is nu klaar!
Maak nu de opgaven 34 t/m 37 van het stencil bij Hoofdstuk 4.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
Om elke rechthoekige driehoek kun je een rechthoek tekenen waarvan jij de oppervlakte uit kunt rekenen. De helft van de oppervlakte van die rechthoek is de oppervlakte van de rechthoekige driehoek.
De woordformule bij het berekenen van de oppervlakte van een rechthoekige driehoek is:
Oppervlakte rechthoekige driehoek = 1/2 x lengte × breedte
De hoogte van een driehoek staat altijd loodrecht op een zijde die erbij hoort. Elke driehoek heeft drie zijden. Bij elke zijde hoort een hoogte.
Je kunt het ook op de volgende manier bekijken:
Hoe kom je tot de formule van ...
een Rechthoekige Driehoek:
Hoe kom je tot de formule van ...
Allerlei Driehoeken:
OPDRACHTEN
1. Hieronder staat driehoek ABC. PC is de hoogte. Deze staat loodrecht op AB. Bereken de oppervlakte van de driehoek. Alle maten zijn in meters.
2. Bereken de oppervlakte van de driehoeken hieronder. Alle maten zijn in centimeters.
3. Teken in een assenstelsel in je schrift de punten A ( 1 , 1 ), B ( 1 , 7 ) en C ( 7 , 6 ).
Teken ook driehoek ABC.
Bereken de oppervlakte van driehoek ABC.
4. Bereken de oppervlakte. Elk hokje is 1 cm2.
Ben je klaar met de sommen dan ga je extra oefenen op onderstaande link:
Elk parallellogram kun je in twee driehoeken opdelen. Kijk maar eens naar de parallellogrammen hieronder.
Twee driehoeken bij elkaar zonder hoogtelijn
parallellogram
Twee driehoeken
bij elkaar zonder hoogtelijn
parallellogram
Je weet dat je de oppervlakte van een driehoek berekent met de formule
oppervlakte driehoek = 1/2 x zijde x bijbehorende hoogte
De oppervlakte van een parallellogram is twee keer zo veel, dus
oppervlakte parallellogram = 2 x 1/2 x zijde x bijbehorende hoogte
maar omdat 2 x 1/2 = 1 kun je dit ook korter schrijven
oppervlakte parallellogram = 1 x zijde x bijbehorende hoogte maar de 1 laten we weg
oppervlakte parallellogram = zijde x bijbehorende hoogte
De hoogte staat loodrecht op de zijde.
OPDRACHTEN
1. a) Bij welke zijde hoor de hoogteliljn TU van parallellogram PQRS?
b) Bereken de oppervlakte van parallellogram PQRS?
c) Bereken de omtrek van parallellogram PQRS?
2. Bereken de oppervlakte van parallellogram KLMN?
3. Waarom kun je van parallellogram ABCD niet de oppervlakte berekenen?
De afmetingen van de parallellogrammen zijn in meters.
4. a) Bereken van elk parallellogram de oppervlakte.
b) Bereken van elk parallellogram de omtrek.
5. Hier zie je een bijzonder parallellogram, namelijk de ruit PQRS.
Bereken de oppervlakte van de ruit.
Oppervlakte vlakke figuren
Voor het bereken van oppervlakte ken je de volgende formules
opp vierkant = lengte x breedte
opp rechthoek = lengte x breedte
opp driehoek = 1/2 x zijde x bijbehorende hoogte
opp parallellogram = zijde x bijbehorende hoogte
opp. ruit = zijde x bijbehorende hoogte
Bij het berekenen van de oppervlakte van een vlieger en een trapezium verdeel je de figuur in stukken die je wel kunt berekenen. Kijk hieronder hoe je dat kan doen.
Als je de oppervlakte van een vlieger of trapezium wilt bereken moet je deze opdelen in stukken die kunt berekenen.
- Als je de symmetrieas tekent in vlieger ABCD zie je dat je twee even grote driehoeken krijgt. De oppervlakte van deze vlieger is twee keer de oppervlakte van deze driehoek.
opp driehoek ABC = 1/2 x 5 x 2 = 5 cm2
opp vlieger ABCD = 2 x 5 = 10 cm2
- Als je de oppervalkte van trapezium EFGH wilt berekenen deel je deze op in een driehoek en een rechthoek. De oppervlakte van het trapezium EFGH is deze dan bij elkaar opgeteld.
opp driehoek EIH = 1/2 x 1 x 2 = 1 cm2
opp rechthoek IFGH = 4 x 2 = 8 cm2
opp trapezium EFGH = 1 + 8 = 9 cm2
OPDRACHTEN
TIP: Elk hokje is 1 cm2
6. a) Bereken de oppervlakte van vlieger PQRS.
b) Bereken de oppervlakte van trapezium ABCD.
7. Bereken de oppervlakte van trapezium FGHI.
8. Kim is de formule voor de oppervlakte van een parallellogram vergeten. Toch kan zij de oppervlakte berekenen van het parallellogram hieronder. Leg uit hoe Kim dit doet.
9. Bereken de oppervlakte van de rode zeshoek.
10. Bereken de oppervlakte van de rode vierhoek?
Oppervlakte van andere vlakke figuren
Als je een vlak figuur niet makkelijk kunt opdelen in stukken, is het soms makkelijker om het in te lijsten. Hieronder zie je hoe dit inlijsten gaat.
Om vierhoek UVWX kun je een rechthoek tekenen, dit noemen we inlijsten.
Je kunt de oppervlakte van de rechthoek berekenen.
opp. rechthoek = 4 x4 = 16 cm2
Ook kun je de oppervlakte van de witte driehoeken berekenen die je teveel hebt.
opp. driehoek 1 = 1/2 x 1 x1 = 0,5 cm2
opp. driehoek 2 = 1/2 x 1 x3 = 1,5 cm2
opp. dirhoek 3 = 1/2 x 3 x 4 = 6 cm2 +
8 cm2
opp. vierhoek UVWX = 16 - 8 = 8 cm2
OPDRACHTEN
Alle hokjes stellen 1 cm2 voor, gebruik inlijsten.
11. Bereken de oppervlakte van vierhoekABCD.
12. Bereken de oppervlakte van vierhoek FGHI.
13. Bereken de oppervlakte van de paarse driehoek.
14. Bereken de oppervlakte van de rode vierhoek.
15. Bereken de oppervlakte van de blauwe zeshoek.
Oppervlakte vlakke figuren door te meten.
Bij wiskunde staan vlakke figuren vaak op roosters. Dan weet je de zijde en de hoogte zonder deze te meten. In de praktijk zal het vaak nodig zijn dat je deze zelf moet opmeten. Door het meten kan het zijn dat er kleine verschillen ontstaan, dit is niet erg.
Voorbeeld:
Bereken de oppervlakte van het trapezium hieronder.
Aanpak:
- Verdeel het trapezium in stukken waarvan je de oppervlakte kunt berekenen.
- Meet de zijden op en bereken de oppervlakte van de vlakken.
- Tel de oppervlakten bij elkaar op.
Oppervlakte rechthoek = 24 x 28 mm = 672 mm2
Oppervlakte driehoek = 1/2 x 24 x 20 = 240 mm2
Oppervlakte trapezium = 672 + 240 = 912 mm2
OPDRACHTEN
16. Meet en bereken de oppervlakte van het parallellogram.
17.a) Meet en bereken de oppervlakte van de vijfhoek.
b) Meet en bereken ook de omtrek van de vijfhoek.
18. Meet en bereken de oppervlakte van de zeshoek in cm2.
19. a) Meet en bereken de oppervlakte van de vlieger.
b) Meet en bereken de oppervlakte van de ruit.
5.3: Omtrek en oppervlakte cirkel
Omtrek en oppervlakte cirkel
Als je de omtrek van een cirkel : diameter van dezelfde cirkel dan komt er altijd hetzelfde getal uit. Dit getal is ongeveer 3,14.
Het getal 3,141592653589...heet pi. We schrijven dat met de Griekse letter \(\pi \).
Om de omtrek van een cirkel te berekenen gebruik je de formule:
omtrek cirkel = \(\pi\) x diameter
Op je rekenmachine zit een speciale toets voor het getal pi. Zoek deze toets op je rekenmachine. Controleer dat \(\pi \)x 6 = 18,8495559215 is. Als je als antwoord 6\(\pi\)krijgt, gebruik dan de S⇔D of toets.
Voorbeeld
Bereken de omtrek van het bovenste tafelblad, rond af op hele centimeters.
Omtrek tafelblad = \(\pi\) x 90 = 283 cm
Om de oppervlakte van een cirkel te berekenen gebruik je de fomule:
Oppervlakte cirkel = \(\pi\) x straal2
Voorbeeld
Bereken de oppervlakte van het bovenste tafelblad in hele dm2.
Eerst zullen we de straal moeten berekenen.
Diameter : 2 = straal en 2 x straal = diameter
Straal = 90 : 2 = 45 cm
Oppervlakte blad = \(\pi\) x 452 = 6362 cm2 = 64 dm2
OPDRACHTEN
1. Bereken de omtrek en oppervlakte van de cirkel.
2. Bereken de omtrek en de oppervlakte van de cirkel.
Bekijk de figuur hieronder.
De figuur bestaat uit twee rechte lijnstukken (AB en AC) en een kwart cirkel (cirkelboog BC).
3. Bereken de omtrek en oppervlakte van de figuur. Bedenk dat dit figuur een kwart van een cirkel is.
4.Bereken de omtrek en oppervlakte van een cirkel met een straal van 5 cm.
Van een 1-euromunt is de diameter ongeveer 24 mm.
5. Bereken de oppervlakte van de munt in hele cm2.
Een rond tafelblad wordt omlijst door een RVS strip. Deze kost €17,49 per strekkende meter.
Het tafelblad heeft een diameter van 74 cm.
6. Bereken hoeveel Euro moet je betalen voor de lijst?
Hieronder zie je een geitje dat met een touw vast zit aan een paal. Het touw is 4 meter lang. Het grasveld waar het geitje op staat is 12 bij 20 meter.
7. Bereken de oppervlakte van het gebied waar het geitje NIET kan komen.
Het voetbalveld wordt voorzien van nieuwe kalklijnen. De diameter van de middencirkel is 18m.
8. a) Bereken de oppervlakte van de middencirkel.
b) Bereken de omtrek van de middencirkel.
5.4: Oppervlakte ruimtefiguren
Oppervlakte balk
De oppervlakte van een rechthoek bereken je met de formule: lengte x breedte.
Als de rechthoek ook een hoogte heeft, noemen we dit een balk. Deze heeft dus de afmetingen lengte, breedte en hoogte. Van zo'n balk kun je de inhoud maar ook de oppervlakte berekenen. Hieronder staat hoe je de oppervlakte van een balk berekent.
Uitwerking:
De oppervlakte van een balk kun je berekenen door de oppervlaktes van alle zijvlakken te berekenen en bij elkaar op te tellen. Een balk heeft altijd van elk zijvlak 2 dezelfde, zoals je kan zien in de afbeelding. Dit gegeven kun je gebruiken om het rekenwerk wat te verkorten. Hieronder staat welke afmetingen je met elkaar moet vermenigvuldigen om de oppervlakte te berekenen van het betreffende zijvlak:
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
Hoofdstuk 6: Formules met haakjes, kwadraten en wortels
6.1: Getallen
WAARDE VAN EEN GETAL
Ieder cijfer in een getal heeft een bepaalde waarde. Stel je hebt het getal 8734,16.
8 (duizendtal) heeft de waarde 8000
7 (honderdtal) heeft de waarde 700
3 (tiental) heeft de waarde 30
4 (eenheid) heeft de waarde 4
1 (tiende) heeft de waarde 0,1
6 (honderdste) heeft de waarde 0,06.
GROTE GETALLEN
Duizend is een 1 met 3 nullen. Duizend x duizend is een miljoen. Dat is een 1 met 6 nullen.
Na duizend en miljoen komt miljard.
duizend
1.000
(1 met 3 nullen)
Miljoen
1.000.000
(1 met 6 nullen)
miljard
1.000.000.000
(1 met 9 nullen)
DELERS
Als je een getal deelt door een ander getal en er komt een geheel getal uit, dan noemen we dat een deler. Bijvoorbeeld 3 is een deler van 18, want 18 : 3 = 6 (geheel getal). Zo zijn ook 18, 9, 3, 2 en 1 delers van 18.
3 is geen deler van 13, want 13 : 3 = 4,33 (geen geheel getal)
VEELVOUD
De eerste vijf veelvouden van 3 zijn: 3, 6, 9, 12 en 15.
De eerste zeven veelvouden van 2 zijn: 2, 4, 6, 8, 10, 12 en 14.
EVEN OF ONEVEN
1 Even getallen zijn deelbaar door 2. Bijvoorbeeld: 2, 10, 12, 18 en 36.
2 Oneven getallen zijn niet deelbaar door 2. Bijvoorbeeld: 1, 3, 5, 11, 17, 3 en 77.
PRODUCT, QUOTIËNT, SOM EN VERSCHIL
Soms wil je getallen vermenigvuldigen.
Het antwoord van een vermenigvuldiging noem je het product.
4 × 5 = 20
20 is het product van 4 en 5
4 en 5 noem je de factoren van het product.
4 × 5,6 = 22,4 22,4 is het product van 4 en 5,6
Hierbij zijn 4 en 5,6 de factoren van het product.
Soms moet je getallen delen.
Het antwoord van een deling noem je het quotiënt.
20 : 5 = 20/5 = 4
4 is het quotiënt van 20 en 5.
64 : 10 = 64/10 = 6,4
6,4 is het quotiënt van 64 en 10
4,5 : 0,9 = 5
5 is het quotiënt van 4,5 en 0,9
Soms moet je getallen bij elkaar optellen.
Het antwoord van de optelsom noem je de som.
4 + 5 = 9 9 is de som van 4 en 5
4 en 5 noem je de termen van de som
4,2 + 5,6 = 9,8
9,8 is de som van 4,2 en 5,6
De termen zijn 4,2 en 5,6
Soms moet je getallen van elkaar aftrekken.
Het antwoord noem je het verschil van de getallen.
5 - 2 = 3
3 is het verschil van 5 en 2
5,6 - 4,2 = 1,4
1,4 is het verschil van 5,6 en 4,2
4,5 - 2,75 = 1,75
1,75 is het verschil van 4,5 en 2,75
Optellen, aftrekken, vermenigvuldigen en delen zijn rekenkundige bewerkingen.
OPDRACHTEN
1 Schrijf steeds de waarde op van het cijfer 3 in de volgende getallen.
a) 365
b) 19,03
c) 1532,12
d) 3576,49
e) 423,19
2. Schrijf de waarde op van elk cijfer in het getal 35.261,49
3. Vul de volgende zinnen aan:
a) Als je met 1000 vermenigvuldigd, schuift de komma .... plaatsen naar .......
b) Als je deelt door 100, schuift de komma .... plaatsen naar ......
4. Schrijf met alleen cijfers
a) twintigduizend
b) 12 miljoen
c) 232 miljard
d) 0,4 miljoen
e) 0,8 miljard
5.
a) Schrijf 3.500.000 met het woord miljoen
b) Schrijf 9.265.000.000 met het woord miljard (rond verstandig af)
c) Schrijf 5600 met het woord duizend
6. Lees het krantenartikel hieronder.
Bereken hoeveel m3 water door huishoudens werd verbruikt in 2001. Geef je antwoord in alleen cijfers.
7. Schrijf van de volgende getallen alle delers op.
a) 3
b) 10
c) 20
d) 15
e) 8
f) 7
8. Schrijf van de volgende getallen de eerste 4 veelvouden op.
a) 3
b) 7
c) 15
d) 100
e) 11
9.
a) Schrijf alle even getallen op die tussen 15 en 25 liggen.
b) Schrijf alle oneven getallen op die tussen 34 en 43 liggen.
10.
a) Bereken het product van 3 en 12.
b) Bereken het verschil van 75 en 18.
c) Bereken het quotiënt van 144 en 12.
d) Bereken de som van 14 en 29.
e) Bereken het product van 7 en 11.
f) Bereken het verschil van 19 en 4.
g) Bereken het quotiënt van 39 en 3.
h) Bereken de som van 47 en 13.
11. Schrijf de volgende getallen in woorden.
a) 12.085
b) 354.100
c) 4.000.600
d) 8.000.600.300
12.
a) Is 42 een veelvoud van 5?
b) Is 49 een veelvoud van 7?
13.
a) Het product van twee factoren is 15. Welke twee factoren kunnen dat zijn?
b) Het quotiënt van twee van getallen is 6. Welke twee getallen kunnen dit zijn?
6.2: Volgorde
VOORRANGREGELS / REKENVOLGORDE
Bij het rekenen gelden de voorrangsregels:
Eerst uitrekenen wat tussen haakjes staat.
Machtsverheffen en worteltrekken van links naar rechts.
Dan vermenigvuldigen en delen.
En dan optellen en aftrekken.
Dit zijn allemaal rekenkundige bewerkingen
Voorbeelden
12 – ( 3 + 2 ) = 12 – 5 = 7
5 + 2 × 6 = 5 + 12 = 17
3 × ( 2 + 4 ) = 3 × 6 = 18
4 + (3 - 1)2 + 2 = 4 + 22 + 2 = 4 + 4 + 2 = 10
4 x 3 - \(\sqrt9\) = 4 x 3 - 3 = 12 - 3 = 9
TEGENGESTELDE
Getallen kunnen het tegengestelde zijn van elkaar. Het tegengestelde van -3 is 3. Het tegengestelde van 0,7 is -0,7. Als je tegengestelde getallen bij elkaar optelt komt er altijd 0 uit. De afstand naar 0 op de getallenlijn is immers hetzelfde.
BEREKENINGEN MET EEN DEELSTREEP
In de berekening hieronder zie je een deelstreep. Het * betekent x.
\( {2 * (3^2 -4) \over 1+1} * 3 =\)
Je moet eerst uitrekenen wat er boven en onder de deelstreep staat. Dan pas maak je de deling. Ten slotte maak je de vermenigvuldiging.
Voorbeeld:
boven de deelstreep: 2 x (32 - 4) = 2 x (9-4) = 2 x 5 = 10
onder de deelstreep: 1+1 = 2
dan 10: 2 x 3 = 15
Om dit op je rekenmachine in te voeren zijn er twee manieren.
1.met haakjes: (2 x (32 - 4)) : (1 + 1) x 3 = Let dus op de dubbele haakjes hier!!
2. met de breuktoets
Probeer nu beide manieren op je rekenmachine, zodat je deze allebei kunt gebruiken.
Neem de som uit het voorbeeld.
OPDRACHTEN
Bereken zonder rekenmachine!
1. Schrijf over enreken uit. Schrijf de tussenstappen ook op.
a) 5+2×4 =
b) (10−2) ×3 =
c) 5×5+3 =
d) 20−8×2 =
2. Schrijf over en reken uit. Schrijf de tussenstappen ook op.
a) 6 + 2 x 3 x \(\sqrt25 \)=
b) (17 + 3)2 : 80 - 40 =
3. Schrijf over en reken uit. Schrijf de tussenstappen ook op.
a)\({10 + 8 * 5 \over 18 + 7} + 18 = \)
b) \({70 : (6 - 11) \over 24 - 17} + 12 = \)
4. Schrijf over en reken uit. Schrijf de tussenstappen ook op.
a) \({\sqrt100 + 15 * 2 \over 4 * 5} +20 =\)
b) \({48 : 2^3 * 15 \over 3^2 + 11} + 20 =\)
Numag je weer je rekenmachine gebruiken.
5. Schrijf over en reken uit. Schrijf de tussenstappen ook op.
a) 4 - 2 x (3 + 1)2 x 2 =
b) 2 + \({\sqrt16} \) x (3 - 1)
c) 9 +
–43
×
–
=
d) 4 x 22 + 4 + 4 =
6. Schrijf het tegengestelde op:
a) 0,19
b) -12
c) 44
d) -0,08
7. Bereken met je rekenmachine, rond indien nodig af op twee decimalen.
a) \({165 + 182 \over 8 : 4} - 2 =\)
b) \({15*4 - 20\over 2 * 5} +16 =\)
c) \({12 * 5^2 \over 2 * 5} +12 = \)
d) \({ \sqrt60 * 9 \over 18 : 6} *2 =\)
6.3: Formules met haakjes
Instructievideo formules met haakjes:
OPDRACHTEN
Zorg ervoor dat je bij elke opdracht de berekening die je maakt opschrijft, niet alleen het antwoord!
1.
Joris heeft een baantje. Hij verdient maandelijks een bedrag volgens de volgende formule:
Bedrag in euro = 5 + (2,50 x a) : 2
a = aantal gewerkte uren.
a) Hoeveel verdient joris na 6 uur werken?
b) En na 24 uur werken?
c) Joris gaat 6 uur per dag werken. Bereken hoeveel Joris verdient als hij 8 dagen werkt.
2 Om de temperatuur van graden Fahrenheit (oF) om te rekenen naar graden Celcius (oC) gebruik je de volgende formule:
temperatuur in °C = 5 x (temperatuur in °F -32) : 9
Bereken de temperatuur in °C. Rond af op 1 decimaal.
a) 75°F
b) 50°F
c) 32°F
d) -2°F
3.
Simon heeft een baantje. Hij verdient maandelijks een bedrag volgens de volgende formule:
Bedrag in euro = (15 + a) x 2,50 : 2
a = aantal gewerkte uren.
a) Hoeveel verdient Simon na 3 uur werken?
b) En na 10 uur werken?
c) Simon gaat 6 uur per dag werken. Berken hoeveel hij na 21 dagen werken verdient?
4.
Erik werkt in het weekend bij een restaurant in Venlo. Hij heeft een contract voor 6 uur per weekend. Hij verdiend dan minimaal €32,50. Als hij meer dan 6 uur werkt krijgt hij meer geld. Hij kan zijn verdiensten berekenen met de volgende formule:
I = €32,50 + 5,50 x ( t - 6 )
I : inkomsten in euro per weekend
t: tijd in uren
a) Hoeveel verdient Erik als hij in het weekend 8 uur werkt?
b) Hoeveel verdient Erik als hij in het weekend 12 uur werkt?
5. Marijke heeft een installatiebedrijf. Zij legt samen met een stagiare installaties aan in nieuwbouwhuizen. De kosten per dag berekent zij met de formule:
kosten per dag in euro = 100 + (t-2) x €43,50
t : tijd in uren
a)Hoeveel kosten rekent Marijke als er 7 uur gewerkt is?
b) Hoeveel kosten rekent Marijke als er 1 uur gewerkt is?
c) Je kunt de voorrijkosten berekenen door t = 0 in te vullen.
Bereken de voorrijkosten.
d) Marijke en haar stagiare doen er drie dagen over om één huis compleet op te leveren. Hieronder zie je hoeveel uren ze elke dag gewerkt hebben.
maandag 9 uur
dinsdag 8 uur
woensdag 5 uur
Hoeveel kosten worden in rekening gebracht voor het opleveren van één huis?
6.4: Formules met een deelstreep
Instructievideo formules met een deelstreep:
OPDRACHTEN
Schrijf bij alle opdrachten de berekening op, niet alleen het antwoord!
1.Een hete luchtballon vaart op een hoogte van 150 meter. De ballon gaat
naar een grotere hoogte. Hierbij hoort een formule:
tijd in min =\({h - 150 \over 40} \)
h: hoogte in meters
a) Hoeveel minuten duurt het om van 150 meter naar 310 meter te stijgen?
b) Hoeveel minuten duurt het om van 150 meter naar 630 meter te stijgen?
c) Hoeveel minuten duurt het om van 150 meter naar 990 meter te stijgen?
2. Job gaat in bad. Hij vult het bad met warm water. Het duurt een
tijdje voor het bad vol is. Joost kan die tijd bereken met de formule:
tijd in minuten = \({aantal\quad liters \over 20}\)
a) Vul in de formule voor aantal liters 120 in. Bereken de tijd in minuten.
b) Job vult het bad met 190 liter water. Hoeveel minuten duurt het vullen?
c) Na een tijdje is het badwater afgekoeld. Job vult het bad verder met warm water. Ook kan hij berekenen hoelang dat duurt.
tijd in minuten = \({aantal \quad liters - 190 \over 5}\)
Vul in de formule voor aantal liter 205 in. Bereken de tijd in minuten.
3.Een hete luchtballon vaart op een hoogte van 720 meter. De ballon gaat dalen.
Hierbij hoort een formule: tijd in min = \({720 - h \over 40}\)
h: hoogte in meters
a) Bereken in hoeveel minuten de ballon daalt van 720 meter naar een hoogte van 240 meter.
b) Bereken in hoeveel minuten de ballon daalt van 720 meter naar een hoogte van 88 meter.
Je kuntvoorspellen hoe lang iemand wordt. Je moet daarvoor de lengte van je vader (v) en de lengte van je moeder (m) weten.
Voor meisjes gebruik je de formule:
lengte meisje = \({ v + m \over 2} -2\)
Voor jongens gebruik je de formule:
lengte jongen = \({ v + m \over 2} + 11\)
alle maten zijn in cm
Gebruik bovenstaande formules
4. De vader van Jeroen is 188 cm lang. Zijn moeder is 172 cm.
Bereken hoe lang Jeroen zal worden.
5. De vader van Pamela is 196 cm lang. Haar moeder is 163 cm.
Bereken hoe lang Pamela zal worden.
6. Bereken je eigen lengte door de lengte van je vader en moeder te gebruiken.
6.5: Formules met kwadraten
Instructievideo formules met kwadraten:
\
KWADRATISCHE FORMULE
Hieronder zie je drie bouwwerken, in de rij van bouwwerken zit regelmaat.
Het aantal kubussen per bouwwerk kun je berekenen met de volgende formule:
aantal kubussen = nummer2 + 1
Deze formule kun je korter schrijven:
aantal kubussen = n2 + 1
In de formule zie je een kwadraat. Daarom heet zo'n formule een kwadratische formule. Vul je in de formule voor nummer 7 in, dan krijg je:
aantal kubussen = 72 + 1 = 49 + 1 = 50, dus bouwwerk nummer 7 bestaat uit 50 kubussen.
Voorbeeld:
Gebruik de formule: aantal kubussen = 3n2 + 2
Hoeveel kubussen heb je nodig voor bouwwerk 6?
Uitwerking:
aantal kubussen = 3 x 62 + 2 = 3 x 36 + 2 = 108 + 2 = 110
OPDRACHTEN
1.
Kijk eens naar de formule: uitkomst = getal² + 3
Neem de tabel hieronder over en vul hem verder in.
getal
−2
−1
0
1
2
3
uitkomst
7
2.
Gegeven is de formule: uitkomst = −2 x getal² + 4
Neem over en vul verder in.
getal
−2
−1
0
1
2
3
uitkomst
−4
3.
Bij de bouwwerken hieronder hoort de formule:aantal kubussen = 3 + n2
a. Bereken het aantal kubussen voor n = 4
b. Bereken het aantal kubussen voor n = 6
c. Bereken het aantal kubussen voor n = 15
d. Één van de bouwwerken bestaat uit 103 kubussen. Welk nummer heeft dit bouwwerk?
e. Neem de tabel over en vul in.
aantal kubussen = 3 + n2
n
1
2
3
4
5
6
7
8
9
aantal kubussen
4.Bij een andere serie bouwwerken hoort de formule:aantal kubussen = 8 + 2n2
a. Bereken het aantal kubussen voor n = 4
b. Neem de tabel over en vul in.
aantal kubussen = 8 + 2n2
n
1
2
3
4
5
6
7
8
9
aantal kubussen
c. Een van de bouwwerken bestaat uit 458 kubussen. Welk nummer heeft dat bouwwerk?
d. Een van de bouwwerken bestaat uit 890 kubussen. Welk nummer heeft dat bouwwerk?
5.
De remweg van een auto kun je berekenen als je snelheid weet. Hierbij hoort de formule:
remweg in meters = snelheid2 x 7 : 1000.
snelheid is in km/uur
a) Bereken de remweg bij een snelheid van 30 km/uur.
b) Bereken de remweg bij een snelheid van 50 km/uur.
c) Bereken de remweg bij een snelheid van 70 km/uur.
d) Is de remweg twee keer zo lang als je snelheid twee keer zo groot is? Laat met een berekening zien, hoe je aan je antwoord komt.
6. Mieke staat boven op een hoge toren. Vanaf 50 meter laat zij een steen vallen. De hoogte van de steen kun je berekenen met de formule:
hoogte steen = 50 - 5t2
t = tijd in seconden
a. Hoe hoog is de steen na 1 seconde?
b. Hoe hoog is de steen na 2 seconde?
c. Is de steen na 4 seconde op de grond? Verklaar je antwoord.
PARABOOL
De grafiek bij een kwadratische formule heet een parabool. Een parabool is altijd symmetrisch.
Als je zelf een grafiek gaat tekenen bij een kwadratische formule dan maak je eerst een tabel met een oneven aantal punten (7 of meer). Daarna teken je de punten uit de tabel in een assenstelsel. Teken door de punten een vloeiende kromme.
Voorbeeld:
hoogte = 3a - 0,5a2
hoogte en a in meters
a
0
1
2
3
4
5
6
hoogte
0
2,5
4
4,5
5
2,5
0
Je ziet dat het parabool symmetrisch is in hoogte = 3
Daar vind je ook het hoogste punt van de grafiek, namelijk hoogte 4,5. Dit punt heeft als coördinaat (3; 4,5)
OPDRACHTEN
7.
Mickey speelt een voetbalwedstrijd. Hij is keeper. Hij trapt de bal weg.
Daarbij hoort de formule
hoogte in m = 2a - 0,1a2
hoogte in meters
a = afstand in meters
a) Vul je voor a=2 in, dan krijg je hoogte = 3,6 meter. Controleer dat met je rekenmachine en schrijf je berekening op.
b) Hoe hoog is de bal na 1 meter?
c) Hoe hoog is de bal na 8 meter?
d) Neem de tabel over en vul hem in.
a
0
2
4
6
8
10
12
14
16
hoogte in m
3,6
e) Teken een assenstelsel. Maak de horizontale as 8 cm lang en neem stapjes van 2 (1 cm = 2 afstand).
Maak de verticale as 10 cm lang en neem stapjes van 1m (1 cm = hoogte 1 m)
f) Teken de punten van de tabel in het assenstelsel.
g) Teken een vloeiende kromme door de punten.
h) Wat is het hoogste punt van de grafiek?
8.
Een boogbrug hangt boven het water. De formule voor de boog van deze brug is
hoogte = 1,5a - 0,25a2
hoogte in meters.
a) Neem de tabel over in je schrift en vul hem in
a
0
1
2
3
4
5
6
hoogte in m
b) Teken een assenstelsel. Maak de horizontale as 6 cm lang en de verticale as ook 6 cm lang.
Op de horizontale as pak je voor elke cm --> afstand = 1.
Op de verticale as pak je voor elke cm --> hoogte = 0,5.
c) Teken de punten van de tabel in je assenstelsel
d) Teken een vloeiende kromme door de punten in je assenstelsel.
e) Hoeveel meter is de grootste afstand tussen het water en de boog?
f) Hoe breed is de boog?
9.
Dirk schiet een vuurpijl af. De baan van de vuurpijl heeft de vorm van een parabool.
Hierbij hoort de formule:
hoogte in m = 20a - a2
a: afstand vanaf Dirk
a.neem de tabel over en vul hem in
hoogte in m = 20a - a2
a
0
4
8
10
12
16
20
hoogte in meter
b. Teken een assenstelsel. Maak de horizontale as 5 cm lang en de verticale as 10 cm lang. Op de horizontale as pak je voor elke cm --> afstand = 4 Op de verticale as pak je voor elke cm --> hoogte = 10 meter
Soms herhaalt een beweging zich na een bepaalde tijd.
Je hebt dan te maken met een periodiek verband
Je ziet hieronder een grafiek van een periodiek verband tussen
de hoogte (h in m) en de tijd (t in min).
In de grafiek is de periode aangegeven. De periode geeft aan
om de hoeveel tijd de beweging zich herhaalt.
Het maximum van de grafiek is het hoogste punt van de grafiek
Het minimum van de grafiek is het laagste punt van de grafiek.
Voorbeeld:
a Wat is het maximum van de grafiek?
b Hoe lang duurt één periode?
c Wat is het minimum van de grafiek?
d Hoe hoog is de waterstand na 6,5 minuut?
e Hoe hoog is de waterstand na 21 minuten?
f Hoeveel perioden zijn er getekend?
Uitwerking:
a Door op zoek te gaan naar het hoogste punt van de grafiek lees je 5 meter af.
b Kijk in de grafiek wanneer deze weer precies hetzelfde punt bereikt als het beginpunt (let op stijgend/dalend) dan vind je een periode van 4 minuten
c Door op zoek te gaan naar het laagste punt van de grafiek lees je 1 meter af.
d Kijk op de horizontale as waar 6,5 minuut is, ga bij dit punt omhoog tot aan de grafiek. Lees dit punt op de verticale as af. Je leest een hoogte van 1,5 meter af.
e 21 minuten staat niet getekend, maar je weet wel hoe lang één periode duurt, namelijk 4 minuten.
De periode past er 5 keer in en je houdt over 1 minuut. Je maakt de berekening 21 - 5 x 4 = 1 minuut Dan lees je in de grafiek de waterhoogte bij 1 minuut af en dit is 5 meter.
f Er zijn twee perioden getekend (en een beetje).
OPDRACHTEN
1.
In de grafiek hieronder is een periodiek verband weergegeven.
a Hoe lang is de periode?
b Wat is het maximum van de grafiek?
c Wat is het minimum van de grafiek?
d Wat is de hoogte na 85 minuten?
2.
In de grafiek hieronder is een periodiek verband weergegeven.
a Hoe lang is de periode?
b Wat is de hoogte na 140 seconden?
c Hoeveel perioden zijn er getekend?
3.
De grafiek hieronder laat het temperatuurverloop in een aquarium zien.
a Wat is de maximale temperatuur in het aquarium?
b Wat is de gemiddelde temperatuur in het aquarium?
c Hoe lang duurt één periode?
d Wat is de temperatuur om 15:20?
e Wat is de temperatuur om 17:40?
4
Hieronder zie je twee perioden getekend. Teken op je werkblad hier nog een periode bij.
5
Hieronder zie je twee perioden getekend. Teken op je werkblad hier nog drie perioden bij.
6.
Een reuzenrad draait heel langzaam rond, zodat je er terwijl het ronddraait in en uit kunt stappen.
Als je instapt is het bakje op zijn laagste punt, het minimum.
Herman draait rond in het reuzenrad. In de tabel zie je op verschillende tijdstippen (t in sec) op welke hoogte (h in m) hij zich bevindt.
t (sec)
0
20
40
60
80
100
120
140
160
180
200
220
h (m)
5
8
13
18
21
18
13
8
5
8
13
18
a Teken de grafiek bij de tabel op het werkblad.
b Welk verband herken je?
c Hoe lang duurt één rondje in het reuzenrad?
6.8 D-toets
Diagnostische Toets
1. Schrijf de waarde op van elk cijfer in het getal 82345,60
2. Schrijf met cijfers:
a. tweeduizendhonderdendrie
b. vijftien miljoen
c. tienmiljardtweehonderdendrieduizend.
d. 0,8 miljoen.
3. Schrijf met het woord miljoen en miljard.
a. 670.000.000
b. 34.000.000.000
4. Schrijf alle delers op van 18.
5. Schrijf de eerste vijf veelvouden op van 4.
6. Schrijf het tegengestelde getal op van -12 en van 4,6.
7. Bereken en schrijf de tussenstappen op! * betekent x
a \({(5^5-125) : \sqrt{100} + 4^3 - 264} =\)
b \({81 : 3^3 * 10\over 4^2 - 6} + 30 =\)
c \({480 : (3*8) + 21\over 2^4 +5} + 6^3=\)
8. Jan heeft een bouwbedrijf. Hij bouwt samen met Marie een schuur. De kosten berekent hij met de formule:
Bereken je welke leeftijd van een kind in jaren bij welke kledingmaat hoort.
a. Bereken de leeftijd die hoort bij kledingmaat 104.
b. Bereken de leeftijd die hoort bij kledingmaat 116.
10. Max trapt de bal zo hoog mogelijk weg. Bij deze trap hoort de formule:
hoogte = 8a - a2
hoogte in meters
a = de afstand vanaf Max in meters
a. Jop staat 2 meter bij Max vandaan. Hij ziet de bal recht boven zich. Hoe hoog is de bal?
b. Bas staat 6,5 meter bij Max vandaan. Hij ziet de bal recht boven zich. Hoe hoog is de bal?
11. Bij een nat wegdek hoort een lange remweg. Hierbij hoort de formule:
\(snelheid = {0,7 + \sqrt{120 remweg} }\)
snelheid in km/u
remweg in meters
a. Piet meet een remweg van 40 meter. Wat was zijn snelheid?
b. Anne meet een remweg van 80 meter. Wat was haar snelheid?
Hoofdstuk 7: Ruimtefiguren
7.1.1: Diepte zien
Het tekenen van een kubus en balk
Hieronder vind je instructiefilmpjes over hoe je een kubus of balk tekent. Handig zo'n filmpje, want deze kun je op pauze zetten en zo gemakkelijk stap voor stap mee tekenen.
Kubus:
Balk:
OPDRACHTEN
1
a. Teken in je uitwerkingenschrift twee kubussen. Beide kubussen hebben
ribben van 4 cm. Stippel in kubus 1 de ribben AD, CD en DH en in kubus 2
de ribben EF, BF en FG.
b. Kleur in kubus 1 vlak ABEF geel, vlak BCFG blauw en vlak EFGH rood.
Kleur in kubus 2 vlak ADEH geel, vlak ABCD blauw en vlak DCGH rood.
c. Welke verschillen zie je in de twee tekeningen van de kubussen?
d. Van welke kubus zie je de bovenkant?
e. Waarom zijn drie ribben van de kubussen gestippeld getekend?
f. Welk vlak is het voorvlak van kubus 1?
g. Welk vlak is het voorvlak van kubus 2?
2
a. Zet de letters ABCD EFGH bij de hoekpunten van de kubus.
b. Neem onderstaande tabel over en zet de volgende woorden op de juiste plaats in de tabel: voorvlak, ondervlak, rechterzijvlak, achtervlak, linkerzijvlak en bovenvlak.
Grensvlak
Soort vlak
ABCD
ABFE
BCGF
EFGH
ADHE
DCGH
c. Zeg van de volgende ribben of ze wel of niet gestippeld zijn.
Ribbe
Wel/niet gestippeld
AB
BC
CG
CD
FG
DH
3
a. Teken de kubus ABCD EFGH met ribben van 3 cm. Teken de kubus in je
uitwerkingenschrift.
b. Teken een kubus met ribben van 5 cm in je uitwerkingenschrift. Kleur alle
zichtbare grensvlakken met een andere kleur.
4
a. Teken een balk PQRS TUVW met PQ = 6 cm, QR = 9 cm en PT = 3 cm in
je uitwerkingenschrift. Maak eerst een schets!
b. Teken een balk ABCD EFGH met AB = 4 cm, BC = 3 cm en AE = 4 cm in
je uitwerkingenschrift. Maak eerst een schets!
7.2: Aanzichten
Om een goed beeld te krijgen van een ruimtelijke figuur, kijk je van verschillende kanten naar het figuur. Een tekening van wat je ziet, heet een aanzicht.
Vaak teken je drie aanzichten. Dit heet een drieaanzicht van het figuur:
vooraanzicht
zijaanzicht
bovenaanzicht
Je ziet een bouwwerk van kubussen.
In het bovenaanzicht staan getallen.
De getallen geven aan hoeveel kubussen op elkaar staan.
Het bouwwerk bestaat uit 3 + 4 + 3 + 3 +2 + 2 + 1 + 0 + 1 = 19 kubusjes.
Opgaven
1
Van een huis is een drieaanzicht getekend.
Het drieaanzicht bestaat uit een:
Vooraanzicht
Zijaanzicht
Bovenaanzicht
Schrijf deze drie woorden bij de tekening op het werkblad.
2 Je ziet hieronder een vogelhuisje.
Teken een drieaanzicht van het vogelhuisje.
3
Je ziet een bouwwerk van kubussen.
In het bovenaanzicht wordt met getallen aangegeven hoeveel kubussen er op elkaar staan.
Vul de getallen in het bovenaanzicht op het werkblad verder in.
Van een ruimtelijk figuur kun je soms meer te weten
komen als je het figuur doorsnijdt.
Het vlak waarlangs je snijdt, noem je de doorsnede.
Doorsneden van dezelfde ruimtelijke figuur kunnen heel verschillend zijn.
De vorm van de doorsnede zie je als je recht op het snijvlak kijkt.
Van bijvoorbeeld een cilinder kun je verschillende doorsneden maken.
Pythagoras
Bekijk balk ABCD·EFGH met AB = 6, BC = 3 en CG = 4.
Teken doorsnede ABGH op ware grootte.
Bereken eerst BG.
Vlak BGHA is een rechthoek van 6 bij 5.
De rechthoek BGHA kun je nu op ware grootte tekenen.
Video Pythagoras schuine zijde berekenen:
Opgaven
1 Een ruimtelijk figuur kun je op verschillende manieren doorsnijden.
Het snijvlak dat je krijgt noem je de doorsnede.
Een cilinder wordt op drie verschillende manieren doorgesneden.
Teken van iedere cilinder het snijvlak.
2 Je ziet hieronder balk ABCD·EFGH getekend. Op de ribben liggen de punten P, Q, R en S.
Er geldt PB = QC en ER = HS. De rechthoek wordt doorgesneden langs vlak PQRS. Teken de doorsnede.
Wat voor soort vierhoek is de doorsnede?
3 Je ziet hieronder opnieuw balk ABCD·EFGH getekend. Op ribben liggen de punten P, Q en R.
Er geldt BP = BQ = BR. De rechthoek wordt doorgesneden langs vlak PQR. Teken de doorsnede.
Wat voor soort driehoek is de doorsnede?
4 Teken de doorsnede ABGH op ware grootte.
5 Teken de doorsnede PQRS op ware grootte.
7.4: Inhoud berekenen
Inhoud balk, cilinder en prisma
Bekijk de volgende ruimtelijke figuren.
Voor deze ruimtelijke figuren geldt dat alle doorsneden evenwijdig
aan het grondvlak dezelfde vorm en grootte hebben.
Voor deze ruimtelijke figuren geldt:
Inhoud = oppervlakte grondvlak × hoogte
Instructievideo inhoud balk,kubus en prisma:
FORMULES
Inhoud kubus, balk, prisma, cilinder = oppervlakte grondvlak x hoogte
Inhoud balk = oppervlakte grondvlak x hoogte
= lengte x breedte x hoogte
= 1 x 10 x 4 = 40 dm3
Rubics cube. Een kubus met ribben van 7 cm.
Inhoud kubus = oppervlakte grondvlak x hoogte
= lengte x breedte x hoogte
= 7 x 7 x 7 = 343 cm3
Inhoud cilinder = oppervlakte grondvlak x hoogte
= π x straal2 x hoogte
= π x 62 x 10 = 1131 cm3
Inhoud prisma = oppervlakte grondvlak x hoogte
= 0,5 x zijde x hoogte x hoogte
= 0,5 x 2 x 1,2 x 2,2 = 2,64 m3
OPDRACHTEN
1 Het grondvlak van dit prisma heeft een oppervlakte van 25 cm².
De hoogte is 5 cm.
Bereken de inhoud van dit prisma.
2
Dit prisma is een halve kubus.
De ribben van de kubus zijn 4 cm.
a Bereken de oppervlakte van het grondvlak.
b Bereken de inhoud van dit prisma.
3 De voorkant van deze 'tent' is een gelijkzijdige driehoek.
De basis is 1,4 m, de hoogte is 2 m.
De diepte van de tent is 2,5 m.
a Bereken de oppervlakte van het grondvlak van dit prisma (hier dus de voorkant van de tent).
b Bereken de inhoud van de tent.
4 Het grondvlak van een cilinder heeft een oppervlakte van 16 cm².
De hoogte is 5 cm.
Bereken de inhoud van de cilinder.
5 De bodem van een cilinder heeft een diameter van 8 cm.
De hoogte van de cilinder is 5 cm.
a Bereken de oppervlakte van het grondvlak (dus de oppervlakte van een cirkel), rond af op één decimaal.
b Bereken de inhoud van de cilinder.
6. Bereken de inhoud van deze balk.
7. Een houten balk heeft de volgende afmetingen:
2800 x 120 x 40 (maten in mm) De prijs van dit hout is €400 per m3.
a Bereken de inhoud van de balk in m3.
b Bereken de prijs van de houten balk.
Dit aquarium heeft de volgende afmetingen: 35 x 120 x 60 cm (lxbxh)
8. Bereken hoeveel liter water er in dit aqarium past?
Hieronder zie je een vakantiehuisje en een vuurpijl. Deze bestaan beide uit twee ruimtelijke figuren. Als je hier de inhoud van wilt berekenen, bereken je de inhoud van elk ruimtelijk figuur apart en telt deze dan bij elkaar op.
9. Bereken de inhoud van dit vakantiehuis.
10.Bereken de inhoud van de vuurpijl.
De jacuzzi is 1,2 meter hoog en heeft een diameter van 1,6 m.
11.
a Bereken hoeveel liter water er in de jacuzzi past?
b Het water staat 0,5 m hoog. Bereken hoeveel liter water er nog bij kan?
7.5: Inhoud piramide en kegel
Inhoud piramide en kegel
- inhoud piramide = oppervlakte grondvlak × hoogte: 3
of 1/3 x oppervlakte grondvlak x hoogte
- inhoud kegel = oppervlakte grondvlak × hoogte : 3
of 1/3 x oppervlakte grondvlak x hoogte
Inhoud kegel = 1/3 x oppervlakte grondvlak x hoogte
= 1/3 x π x straal2 x hoogte
= 1/3 x π x 1,252 x 6 = 9,8 cm3
Deze lamp heeft de vorm van een piramide. Het grondvlak is een vierkant met zijden van 14 cm. De hoogte is 12 cm.
Inhoud piramide = 1/3 x oppervlakte grondvlak x hoogte
= 1/3 x lengte x breedte x hoogte
= 1/3 x 14 x 14 x 12 = 784 cm3
OPDRACHTEN
1.Het grondvlak van de piramide hieronder is een gelijkbenige rechthoekige driehoek, met AC = BC =6 cm.
De hoogte van de piramide is 6 cm.
a Bereken eerst de oppervlakte van het grondvlak. b Bereken vervolgens de inhoud van de piramide.
2Hetgrondvlak van de kegel hieronder is een cirkel met een straal van 3 cm.
De hoogte van de kegel is 8 cm.
a Bereken de oppervlakte van het grondvlak. b Bereken de inhoud van de kegel.
3 De piramide hieronder heeft een grondvlak met een oppervlakte van 25 cm². De hoogte is 6,3 cm.
Bereken de inhoud van de piramide.
Cornetto ijs. In een doos zitten 12 van deze ijsjes.
4.
a Bereken de inhoud van deze ijs, rond af op hele cm3.
b Bereken of er meer of minder ijs dan 0,5 liter in de doos zit?
5Joost heeft dit potje hieronder gemaakt.
Hij is begonnen met het maken van een kegel met een hoogte van 8 cm en met een grondvlak met een diameter van 8 cm.
Daar heeft hij een kegel met een hoogte van 4 cm en een diameter van 4 cm vanaf gehaald.
Bereken de inhoud van het "groene" potje.
6. Het theezakje hieronder bestaat uit allemaal gelijkzijdige driehoeken met zijden van 3 cm. De hoogte van het zakje is ook 3cm.
Bereken de inhoud van dit piramide vormig theezakje.
Dus ook als je te maken hebt met een verkleining, heet het nog steeds een vergrotingsfactor. Is deze kleiner dan 1 dan heb je dus te maken met een verkleining.
Kopieerapparaat:
Als je een vel papier in een kopieerapparaat legt, kun je deze vergroten of verkleinen. Standaard staat het apparaat op 100%, je krijgt dat dezelfde afmetingen als het origineel. De vergrotingsfactor is 0.
Onder de 100%, dan wordt het een verkleininig, boven de 100% dan wordt het een vergroting.
Bij 80% hoort een vergrotingsfactor van 0,80 want
beeld : origineel =80% : 100% = 0,8
Bij 150% hoort een vergrotingsfactor van 1,5 want
beeld : origineel = 150% : 100 % = 1,5
Ook hier kun je de vergrotingsfactor lezen als een vermenigvuldiging.
voorbeeld:
Een blaadje van 20 bij 30 cm wordt bij een vergroting van 80%
(dit is dus een verkleining) :
20 x 0,80 = 16 cm bij 30 x 0,80 = 24 cm.
Datzelfde blaadjr wordt bij een vergroting van 150%:
20 x 1,50 = 30 cm bij 30 x 1,50 = 45 cm.
OPDRACHTEN
1. driehoekABC (origineel) is gelijkvormig met driehoek DEF. Bereken de vergrotingsfactor. (Zet je beeldscherm op 100%!!)
2. Teken een vergroting van het huis. Neem als vergrotingsfactor 3. Elk hokje is 1cm bij 1 cm.
3. Driehoek PQR is een vergroting van driehoek PST. Bereken de vergrotingsfactor.
4. De tweede foto is een vergroting van de eerste foto. Bereken de vergrotingsfactor.
5. Onderstaande driehoeken zijn gelijkvormig. Wat is de vergrotingsfactor?
6. Teken de vergroting van driehoek EFG. Neem vergrotingsfactor 2.
7. Teken de vergroting van het huisje. De vergrotingsfactor is 0,5.
8. John legt zijn hand op het kopieerapparaat. Hij stelt deze in op 95%.
a) Wordt de afbeelding van zijn hand groter of kleiner?
b) Welke vergrotingsfactor hoort er bij 95%?
c) John zijn ring is 9 mm breed, hoe breed is de ring op de kopie?
9. Marijke legt een foto van 40 x 30 cm onder het kopieerapparaat. Zij wil een foto van 25 x 18,75 cm hebben.
Op welk percentage moet Marijke het apparaat instellen? Laat met berekeningen zien hoe je aan je antwoord komt.
8.2 Gelijkvormige driehoeken
8.3 Oppervlakte en inhoud vergroten
Oppervlakte vergroten
Als je een rechthoek wilt vergroten met vergrotingsfactor 3, dan wordt de lengte 3 keer zo groot en de breedte 3 keer zo groot.
De oppervlakte wordt dan 3 x 3 = 9 keer zo groot.
Kijk naar het plaatje hieronder. De oppervlakte van het origineel is 2. De oppervlakte van het beeld is 9 keer zo groot dus 2 x 9 = 18
Als je het origineel met vergrotingsfactor 3 vergroot, dan wordt de oppervlakte van het beeld 3 x 3 = 9 keer zo groot.
Je kunt ook zeggen de oppervlakte wordt 32 = 9 keer zo groot.
Je gebruikt hierbij de formule:
Oppervlakte beeld = vergrotingsfactor2 x oppervlakte origineel
voorbeeld:
oppervlakte = 5 cm2
De oppervlakte van het figuur hierboven is 5 cm2 . Het figuur wordt vergroot met vergrotingsfactor 2,4. Bereken de oppervlakte van het beeld.
Gebruik de formule: oppervlakte beeld = vergrotingsfactor2 x oppervlakte origineel
oppervlakte beeld = 2,42 x 5 = 28,8
oppervlakte beeld = 28,8 cm2
Opgaven: oppervlakte vergroten
1
Schrijf bij iedere vergrotingsfactor het getal op, waar je de oppervlakte van het origineel mee moet vermenigvuldigen om de oppervlakte van het beeld te krijgen.
Kijk naar het voorbeeld.
vergrotingsfactor = 3 dus ik vermenigvuldig de oppervlakte van het origineel met 32= 9
a vergrotingsfactor = 4 dus ik vermenigvuldig de oppervlakte van het origineel met .... = .....
b vergrotingsfactor = 2 dus ik vermenigvuldig de oppervlakte van het origineel met .... = .....
c vergrotingsfactor = 5,2 dus ik vermenigvuldig de oppervlakte van het origineel met .... = .....
d vergrotingsfactor = 0,75 dus ik vermenigvuldig de oppervlakte van het origineel met .... = .....
2a Bereken de oppervlakte van een rechthoekige foto van 2 bij 6 cm.
b De foto wordt vergroot met factor 5. Bereken de oppervlakte van de grote foto (het beeld)
3
Van een rechthoek met een oppervlakte van 3 cm2 is een beeld gemaakt met een vergrotingsfactor van 4.
Bereken de oppervlakte van het beeld.
4 Van een driehoek KLM is de oppervlakte 20 cm2. De driehoek wordt vergroot met factor 12.
a Bereken de oppervlakte van de vergrote driehoek (het beeld) in cm2.
b Hoeveel dm2 is dat?
5
De vijver in de tekening heeft een oppervlakte van 8 cm2.
Alle maten zijn in het echt 60 keer zo groot.
Bereken de oppervlakte van de echte vijver (het beeld) in m2.
6
Michelle heeft een foto van haar lievelingsartiest. Zij wil er een poster van laten maken om op haar kamer te hangen.
De lengte en breedte worden allebei drie keer zo groot. Hoeveel keer past de foto in de poster?
7
a Twee gelijkvormige plaatjes hebben een oppervlakte van 4 cm2 en 144 cm2. Bereken de vergrotingsfactor.
b Een dienblad is 20 bij 30 cm. Er is ook een groter dienblad met dezelfde vorm.
De oppervlakte van dat grote dienblad is 5400 cm2.
Bereken de maten van het grote dienblad.
Inhoud vergroten
Als je een balk vergroot met vergrotingsfactor 2 dan wordt de lengte 2 keer zo groot, de breedte 2 keer zo groot en de hoogte 2 keer zo groot. De inhoud wordt dan 2 x 2 x 2 = 8 keer zo groot.
Kijk naar het plaatje hierboven. De inhoud van het origineel is (2 x 2 x 6 =) 24 cm3. De inhoud van het beeld is 8 keer zo groot dus 24 x 8 = 192 cm3.
De inhoud van dit beeld kun je ook berekenen door
Inhoud beeld = lengte x breedte x hoogte
Inhoud beeld = 4 x 4 x 12 = 192 cm3
Als je het origineel met vergrotingsfactor 2 vergroot, dan wordt de inhoud van het beeld 2 x 2 x 2 = 8 keer zo groot.
Je kunt ook zeggen de inhoud wordt 23= 8 keer zo groot.
Je gebruikt hierbij de formule: Inhoud beeld = vergrotingsfactor3 x inhoud origineel
voorbeeld
De inhoud van het kleine kopje is 110 mL.
Van de grote kop zijn alle maten 1,6 keer zo groot (dus de vergrotingsfactor = 1,6)
Bereken de inhoud van de grote kop in hele milliliters.
Gebruik de formule: inhoud beeld = vergrotingsfactor3 x inhoud origineel
Inhoud beeld = 1,63 x 110 = 450,56
Inhoud beeld = 451 mL
Oppervlakte bij vergroten
oppervlakte beeld = vergrotingsfactor2 × oppervlakte origineel
Schrijf bij iedere vergrotingsfactor het getal op, waar je de inhoud van het origineel mee moet vermenigvuldigen.
Kijk naar het voorbeeld.
vergrotingsfactor = 3 dus ik vermenigvuldig de inhoud van het origineel met 33 = 27
a vergrotingsfactor = 4 dus ik vermenigvuldig de inhoud van het origineel met .... = .....
b vergrotingsfactor = 2 dus ik vermenigvuldig de inhoud van het origineel met .... = .....
c vergrotingsfactor = 5,2 dus ik vermenigvuldig de inhoud van het origineel met .... = .....
d vergrotingsfactor = 0,75 dus ik vermenigvuldig de inhoud van het origineel met .... = .....
9
Bij de winkel worden verschillende maten waterflesjes verkocht. Waterflesje A heeft een inhoud van 0,5 liter. a Waterflesje B is een vergroting van waterflesje A met vergrotingsfactor 1,59. Bereken de inhoud van waterflesje B.
b Waterflesje C is een verkleining van waterflesje B met vergrotingsfactor 0,4. Bereken de inhoud van waterflesje C.
10
a Bereken de inhoud van bovenstaande doos
b Een andere doos heeft dezelfde vorm, maar alle maten zijn 1,5 keer zo groot.
Bereken de inhoud van de grote doos (beeld).
11
De kleine doos en de grote doos hebben dezelfde vorm.
a Bereken de vergrotingsfactor
b De inhoud van de kleine doos is 9 liter. Bereken de inhoud van de grote doos.
12
In Egypte zijn veel piramides te vinden. Hieronder zie je een voorbeeld.
Een van de piramides heeft een vierkant grondvlak met zijden van 220 meter.
De hoogte is 140 meter.
a Bereken de inhoud van deze piramide inhoud piramide = 1/3 x oppervlakte grondvlak x hoogte
b Naast deze piramide staat een andere piramide met dezelfde vorm.
De vergrotingsfactor is 0,7. Is de andere piramide groter of kleiner? Leg uit hoe je dit weet.
Het arrangement 2kgt is gemaakt met
Wikiwijs van
Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt,
maakt en deelt.
Auteur
Juul Pinxt
Je moet eerst inloggen om feedback aan de auteur te kunnen geven.
Laatst gewijzigd
2019-05-20 08:59:47
Licentie
Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding 3.0 Nederlands licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding vrij bent om:
het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
voor alle doeleinden, inclusief commerciële doeleinden.
Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten
terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI
koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI
koppeling aan te gaan.
Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.
Arrangement
Oefeningen en toetsen
Vlakke figuren
Vlakke figuren
Hoeken berekenen
Hoeken berekenen
Stelling van Pythagoras
Statistiek en kans 1
Statistiek en kans 2
Informatie verwerken 1
Informatie verwerken 2
Oppervlakte
Omtrek cirkel
Oppervlakte cirkel
IMSCC package
Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.
Oefeningen en toetsen van dit arrangement kun je ook downloaden als QTI. Dit bestaat uit een ZIP bestand dat
alle
informatie bevat over de specifieke oefening of toets; volgorde van de vragen, afbeeldingen, te behalen
punten,
etc. Omgevingen met een QTI player kunnen QTI afspelen.
Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en
het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op
onze Developers Wiki.