Wiskunde vmbo-b12

Wiskunde vmbo-b12

Wiskunde vmbo-b12

Deze informatie hoort bij de stercollecties wiskunde voor klas 1 en 2 vmbo-b die in opdracht van VO-content door StudioVO zijn ontwikkeld.

Een Stercollectie is leermateriaal dat voldoet aan de volgende kenmerken:
- kerndoelen of eindtermen dekkend.
- gebaseerd op de door de SLO ontwikkelde leerdoelspecificaties voor het vak wiskunde.
- onderdeel van een leerlijn.
- voor een vak, een afdeling, een leerjaar.
- leerboek en werkboekvervangend.
- digitaal met onderdelen op papier.
- beschikbaar via VO-cotent.nl en Wikiwijs.
- wordt onderhouden en geactualiseerd op basis van gebruikerservaringen.

Voor wiskunde onderbouw vmbo zijn de volgende vier Stercollecties ontwikkeld:
- wiskunde leerjaar 1 vmbo b
- wiskunde leerjaar 2 vmbo b
- wiskunde leerjaar 1 vmbo kgt
- wiskunde leerjaar 2 vmbo kgt

De Stercollecties wiskunde draaien in een browser (IE8, Chrome, FireFox, Safari).

Docentenmateriaal
Exclusief voor leden van VO-content is er bij de Stercolelcties docentenmateriaal ontwikkeld.
Dat materiaal bestaaat uit:
- een docentenhandleiding
- extra opgaven (op papier)
- toetsen
Is uw school lid van VO-content, maar kunt u het docentenmateriaal niet vinden,
neem dan contact op met de helpdesk: http://www.vo-content.nl/contact/helpdesk/

Ontwikkelproces en kwaliteitszorgsysteem
Voor de ontwikkeling van de Stercollecties wiskunde maakt StudioVO gebruik van ervaren docenten en redacteurs. Samen met de SLO is er voor de Stercollecties een kwaliteitszorgsysteem ontwikkeld. Dit systeem bestaat uit drie onderdelen: de oorsprong van het leermateriaal, het gebruik van het leermateriaal en de correctheid van het materiaal.

Feedback, vragen of opmerkingen:
We willen u graag nadrukkelijk wijzen op de mogelijkheid om uw bevindingen, wensen of verbetersuggesties aan ons door te geven. Wij zullen waar mogelijk gebruik maken van deze reacties om het materiaal verder te verbeteren en waar nodig te corrigeren.
Ga naar http://www.vo-content.nl/contact/helpdesk/ met opmerkingen, feedback en/of vragen over de Stercollecties wiskunde.

Thema's leerjaar 1

Heb je wel een op een autosnelweg gereden? Vast wel.
Langs autosnelwegen staan bordjes zoals hiernaast.
Op het bordje staan allerlei getallen.
- Wat betekenen de getallen op de bordjes?
- Kun je aan die bordjes zien hoeveel kilometer je gereden hebt?
- Kun je aan die bordjes zien hoeveel kilometer je nog moet rijden?
Om antwoord te kunnen geven op dit soort vragen, moet je kunnen rekenen met decimale getallen.
En dat ga je nu net leren in dit thema.
 

Thema Basisrekenen


 

2 Meetkunde

Op de tv zijn veel programma’s te zien die gaan over het opnieuw inrichten van een woning.
Voordat er aan zo’n klus wordt begonnen zijn er eerst voorbereidingen getroffen om tot een mooi eindresultaat te komen.
Maten van de kamers worden opgenomen, materialen worden uitgezocht en er worden verschillende ontwerpen gemaakt. Daarna wordt er bepaald hoeveel rollen behang, hoeveel blikken muurverf, hoeveel meter vloerbedekking of hoeveel pakketen laminaat er moeten worden gekocht.

Om een metamorfose te kunnen maken moet je eerst iets weten over maten en meten en hoe je een oppervlakte kunt bepalen.
Dat ga je in de twee thema's meetkunde leren.
 

Thema meetkunde 1

 

Thema meetkunde 2

 

3 Afronden, schatten en voorrangsregels

Ken je het 24-spel?
Dit spel is geschikt om goed te leren hoofdrekenen.
Je krijgt een speelkaart met 4 getallen.
Met deze 4 getallen moet het getal 24 gemaakt worden door optellen, aftrekken, delen en vermenigvuldigen.
Alle 4 getallen moeten precies één keer gebruikt worden.

Hiernaast zie je een speelkaart.
Lukt het je om de oplossing te vinden?
Om het 24-spel goed te kunnen spelen moet je eigenlijk weten hoe de voorrangsregels werken. En dat ga je in dit thema leren.....
 

Thema afronden, schatten en voorrangsregels


 

4 Plaatsbepalen

Samir Boukhari is veertien jaar. Samir wil na schooltijd wat bijverdienen.
Hij wordt fietskoerier. Iedere middag na school gaat hij pakjes en brieven bezorgen. Op zijn city-bike is hij vaak sneller dan een bestelauto.

Bij het opzetten van een eigen zaak komt heel wat kijken.
Als een klant belt, moet Samir die klant snel kunnen vinden. En als de klant vraag wat het gaat kosten, moet Samir snel een prijs kunnen noemen.
Om fietskoerier te kunnen worden, moet Samir goed met kaarten kunnen werken en moet hij weten hoe je een afstand op een kaart omzet in werkelijke afstanden. En dat ga jij nu juist leren in dit thema.

 

Thema Plaatsbepalen


 

5 Breuken

Je hebt vast wel eens pizza gegeten.
Was het in een pizzeria of kwam de pizza uit de supermarkt?
Heb je een wel eens een pizza slice (een stuk van een pizza) bij een afhaalpizzaria gehaald?
Je kunt een pizza ook via internet bestellen en laten bezorgen.
Je hebt zelfs websites waarop je een eigen pizza samen kunt stellen.
Dit thema heeft als titel 'Breuken'.
Het is handig als je weet wat breuken zijn en hoe je met breuken rekent, als je wilt uitrekenen hoeveel een 'pizza slice' kost. Of als je wilt weten wat je moet betalen als je een pizza bestelt die je zelf hebt samengesteld.
 

Thema Breuken

 

6 Grafieken

Je hebt vast wel eens beelden gezien van overstromingen. Komt dit nu alleen maar door stormen en veel regen in de herfst of zijn er nog andere oorzaken, zoals het smelten van het poolijs? 
Er zijn veel wetenschappers die zich bezig houden met het klimaat.
Zij verzamelen gegevens over regen, wind en temperatuur.
Vaak verwerken ze deze gegevens in tabellen en grafieken.
- Waarom wordt er gewerkt met tabellen en grafieken?
- Kun je aan de hand van tabellen en grafieken iets voorspellen?
Om antwoord te kunnen geven op dit soort vragen,
moet je zelf goed grafieken kunnen aflezen.
Je moet ook weten hoe je een grafiek kunt tekenen.
En dat ga je nu juist leren in dit thema.
 

Thema Grafieken

 

 

7 Verhoudingstabellen

Dit thema sluit je af met een opdracht over versnellingen.
Je leert wat wordt bedoeld met de overbrenging en met het verzet.
En je maakt een tabel waarin je laat zien hoe groot de overbrenging en het verzet van je eigen fiets is.
Om dit hema goed af te kunnen sluiten, moet je iets weten over verhoudingstabellen. En dat ga je leren in dit thema.
 

Thema Verhoudingstabellen

 

 

8 Hoeken

Je bent vast wel eens op een glijbaan gezeten.
Je gaat soms onder een steile hoek naar beneden. Soms ga je bijna loodrecht naar beneden. Hoe groter de hoek hoe groter de snelheid.
Je gaat in dit thema een onderzoekje doen naar het verband tussen de grootte van een hoek van een glijbaan en de snelheid.
Om het onderzoekje goed te kunnen doen, moet je iets weten over hoeken.
- Wat is een hoek?
- Hoe wordt de grootte van een hoek gemeten?
- Hoe teken je een hoek van een bepaalde grootte?
En dat ga je nu juist leren in dit thema.
 

Thema Hoeken

 

9 Procenten

Dit thema gaat over procenten. Procenten kom je overal tegen.
Kijk maar eens naar de volgende voorbeelden;
- Het computergebruik is met 10% gestegen.
- De rente op mijn spaarrekening is 4%.
- Een pak koffie is 5% duurder geworden.
Waarschijnlijk heb je wel eens gehoord van het computerprogramma Excel. Excel is een rekenprogramma.
Het programma is ook zeer geschikt voor het rekenen met procenten.
Ter afsluiting van dit thema ga je dan ook met procenten rekenen in Excel.
Maar voor dat het zover is, moet je eerst weten wat een procent precies is en hoe je rekent met procenten. En dat ga je leren in dit thema.
 

Thema Procenten

 

10 Ruimtelijke figuren

De Eiffeltoren ken je vast wel.
Het is een van de bekendste bouwwerken van Europa.
De eiffeltoren staat in Parijs.
In veel Europese (hoofd)steden staan bekende gebouwen.
Van veel bekende Europese gebouwen kun je in een souvenirwinkeltje een miniatuurversie kopen.
Zou je zelf een bekend gebouw in het klein kunnen maken?
Om zelf een maquette te maken van een bekend gebouw
moet je iets weten:
- van ruimtelijke figuren,
- van uitslagen en aanzichten en
- van het werken op schaal.
En dat ga je in dit thema leren.
 

Thema Ruimtelijke figuren

 

11 Negatieve getallen

Dit thema gaat over negatieve getallen. Negatieve getallen kun je overal tegenkomen. Kijk maar eens naar de volgende voorbeelden:
- Vannacht was de temperatuur -3°C.
- Het waterpeil daalde tot -3 m onder NAP (Normaal Amsterdams Peil).
- Doordat ik te veel geld heb uitgegeven, heb ik een negatief banksaldo.
Ook in spelletjes kunnen negatieve getallen een rol spelen.
Ter afsluiting van dit thema ga je twee van dat soort spellen spelen.
En je gaat zelf een spel maken.
Maar voor dat het zover is, moet je eerst weten wat een negatief getal is en hoe je rekent met negatieve getallen.
En dat ga je nu juist leren in dit thema.
 

Thema Negatieve getallen


 

Thema's leerjaar 2

12 Verbanden

Weet jij hoeveel jullie thuis per maand aan energie betalen?
Waarschijnlijk iedere maand een vast bedrag.
Maar jullie verbruiken niet iedere maand dezelfde hoeveelheid energie.
Hoe zit dat?

In deze opdracht onderzoek je een jaarafrekening van het energiebedrijf. Dat doe je met behulp van het computerprogramma Excel.
Om dat onderzoek goed te kunnen uitvoeren, moet je iets weten van formules. Daarom ga eerst iets leren over formules in dit thema.
 

Thema Verbanden

 

13 Informatieverwerken

Hoeveel geld geeft een gezin uit aan eten, drinken en wonen?
En hoeveel geld is er dan over voor de andere uitgaven?

In deze opdracht vergelijken jullie het uitgavenpatroon van drie gezinnen:
- een gezin met een laag inkomen,
- een gezin met een gemiddeld inkomen en
- een gezin met een hoog inkomen.
Om de uitgaven goed met elkaar te vergelijken, maak je gebruik van diagramen. Hoe je dat kunt doen, leer je in dit thema.
 

Thema Informatie verwerken

 

14 Kijkmeetkunde

Een bouwbedrijf wil een vakantiepark met vakantiehuisjes aanleggen. Het park komt bij het plaatsje Opperdam. De naam van het park wordt “Heideheuvel”. De vakantiehuisjes gaan ze verkopen.
Het bouwbedrijf heeft een folder nodig. In de folder staat informatie over het park en informatie over de omgeving.
Het bouwbedrijf wil ook een mooie maquette van een huisje hebben.
De folder en de maquette ga jij aan het eind van het thema voor het bouwbedrijf maken.
Om het bouwbedrijf te helpen bij het maken de folder en de maquette moet je kunnen werken met lengte- en oppervlaktematen. Je moet kunnen werken met schaallijnen en uitslagen. En je moet iets weten van aanzichten en van kijklijnen en kijkhoeken. En daarover gaat dit thema.
 

Thema Kijkmeetkunde

 

15 Vergelijkingen

Het spel ganzenbord ken je vast wel.
Hiernaast zie je een stukje van een speelbord voor ganzenbord.
Op de hokjes staan formules met een 'X'.
De 'X' staat voor het aantal ogen dat je gooit.

Voorbeeld 1
Je staat op het hokje met de formule 'X + 2' en je gooit '3'.
Je mag dan 3 + 2 = 5 stappen vooruit.

Voorbeeld 2
Je staat op het hokje met de formule '2 - X' en je gooit '3'.
Je krijgt dan als uitkomst 2 - 3 = -1. Je moet dan 1 hokje terug.

Stel je staat nog 8 hokjes voor de finish.
Je staat op het hokje met de formule '2X + 2'.
Je wilt weten hoeveel ogen je moet gooien om op de finish te komen.
De uitkomst van de formule 2X + 2 moet dus 8 zijn.
Wat moet je gooien?

Om het antwoord op dat soort vragen te kunnen geven,
moet je weten wat een vergelijking is.
En je moet je een vergelijking kunnen oplossen.
En dat ga je leren in dit thema.
 

Thema Vergelijkingen


 

16 Symmetrie

Bij veel kastelen is er de mogelijkheid om een bezoek te brengen aan de kasteeltuin. Na een wandeling door de tuin rusten ze dan graag uit op het mooie terras om de vijver.

Hiernaast zie je aantal kasteeltuinen.
Hoe komt het, denk je, dat veel mensen die kasteeltuinen zo mooi vinden?
Het heeft vast te maken met de planten en de bloemen die je in de tuinen kunt vinden. Maar er is meer. Veel mensen vinden de tuinen mooi vanwege de vaste patronen die zich regelmatig herhalen.

Zou jij zo'n tuin kunnen ontwerpen?
Als je een kasteeltuin wilt ontwerpen, moet je iets weten over symmetrie en over vlakke figuren. En dat ga jij nu juist leren in dit thema.
 

Thema Symmetrie

 

 

17 Cirkels

In het dagelijkse praktijk heb je regelmatig te maken met de omtrek en oppervlakte van figuren. Op internet kun je filmpjes vinden waarin uitgelegd wordt hoe je iets uit kunt rekenen. Zou jij zo'n filmpje zelf kunnen maken? Dat ga je aan het eind van dit thema samen met een klasgenoot doen.
Maar voordat je dat gaat doen, moet je natuurlijk wel zelf weten hoe je de omtrek en oppervlakte uitrekent. En dat ga je nu eerst leren in dit thema.
 

Thema cirkels

 

 

 

18 Lineaire verbanden

Heb jij een mobiele telefoon? Vast wel. Tegenwoordig heeft bijna iedere leerling een mobiele telefoon. Bijvoorbeeld om even naar huis te bellen als je na moet blijven. Of om een sms-je te versturen naar een vriend of vriendin.

Yorrick mag een nieuwe mobiele telefoon. Maar voordat hij een nieuwe koopt, wil hij eerst meer weten over de kosten.
Op internet heeft hij van vier aanbieders gegevens gevonden.
Die gegevens zie je hiernaast.
Bij welke aanbieder moet Yorrick een abonnement aflsuiten?
Je gaat uitzoeken welke aanbieder het best bij Yorrick past. Het is dan wel handig als je iets weet over lineaire verbanden en lineaire vergelijkingen.
En dat ga je nu eerst leren in dit thema.
 

Thema Lineaire verbanden

 

 

19 Verhoudingen en procenten

Heb je je ouders wel eens horen klagen over de benzineprijs? Vast wel!
In de afbeelding hiernaast zie je hoe de benzine prijs is opgebouwd.

Het grootste deel van de pompprijs bestaat uit belastingen:
accijnzen en BTW.
De accijns wordt jaarlijks door de overheid vastgesteld.
De BTW (19%) beweegt mee met de totale pompprijs.

In de afbeelding zie je dat in 2011 de pompprijs voor 66% uit accijnzen en BTW bestond.
Ingewikkeld? Wel als je niets van verhoudingen en procenten weet.
In dit thema ga je aan de slag met verhoudingen en procenten.
En hopelijk snap je aan het eind van het thema dan op welke manier belastingen invloed hebben op de prijzen. Bijvoorbeeld op de prijs van benzine.
 

Thema Verhoudingen en procenten

 

 

20 Gemiddelde

Je ziet al een hele tijd op school.
Je hebt al heel wat geleerd en al heel wat toetsen gemaakt.
Dit thema gaat over cijers.
Je kijkt hoe je rapportcijfers uit kunt rekenen.
En je verwerkt cijfers in een speciaal soort diagram:
het steel- en bladdiagram.

Om het thema af te ronden, moet je iets weten over het gemiddelde.
En dat is dan ook de titel van dit thema.
 

Thema Gemiddelde


 

21 Doorsnede en inhoud

In het centrum van Rotterdam staan kubuswoningen.
De woningen zijn bedacht door de architect Piet Blom.
Zou jij in zo'n kubuswoning willen wonen.
Wat is leuk? Wat is minder leuk?
Om goed antwoord te kunnen geven, moet je iets weten over de doorsnede en inhoud van ruimtelijke figuren.
En dat ga jij nu juist leren in dit thema.
 

Thema Doorsnede en inhoud


 

Kennisbank

In de thema´s/opdrachten van de Stercollecties wiskunde wordt regelmatig verwezen naar de Kennisbank wiskunde. In de Kennisbank vind je de theorie die je nodig hebt voor het beantwoorden van de vragen en het maken van de opdrachten. 

De Kennisbank is te vinden via de volgende link:

Kennisbank wiskunde vmbo-b onderbouw 

Test: test1

Start

  • Het arrangement Wiskunde vmbo-b12 is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Auteur
    Dicky van Berkel Je moet eerst inloggen om feedback aan de auteur te kunnen geven.
    Laatst gewijzigd
    2017-01-09 15:45:45
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 3.0 Nederland licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    Rearrangeerbare stercollectie wiskunde voor leerjaar 1 en 2 VMBO B van Stichting VO-content. De stercollectie is ontwikkeld op basis van de kerndoelen basisvorming en de door de SLO ontwikkelde inhoud- en leerdoelspecificaties voor het vak wiskunde. Een Stercollectie wordt onderhouden en geactualiseerd volgens een kwaliteitszorgsysteem van SLO.
    Leerniveau
    VMBO basisberoepsgerichte leerweg, 1; VMBO basisberoepsgerichte leerweg, 2;
    Leerinhoud en doelen
    Rekenen/wiskunde;
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    100 uur en 0 minuten
    Trefwoorden
    leerlijn, rearrangeerbare, vo-content

    Gebruikte Wikiwijs Arrangementen

    VO-content - Leerlijnen. (2024).

    Wiskunde vmbo-b12

    https://maken.wikiwijs.nl/54460/Wiskunde_vmbo_b12

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    Oefeningen en toetsen

    test1

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    QTI

    Oefeningen en toetsen van dit arrangement kun je ook downloaden als QTI. Dit bestaat uit een ZIP bestand dat alle informatie bevat over de specifieke oefening of toets; volgorde van de vragen, afbeeldingen, te behalen punten, etc. Omgevingen met een QTI player kunnen QTI afspelen.

    Versie 2.1 (NL)

    Versie 3.0 bèta

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.