Practical: Convolutional Neural Networks

Practical: Convolutional Neural Networks

Administrative information


 

Title Convolutional Neural Networks
Duration 180
Module B
Lesson Type Tutorial
Focus Technical - Deep Learning
Topic Deep learning

 

Keywords


CNN,Deep learning,Python,

 

Learning Goals


  • Gain experience in training and testing CNNs
  • Gain experience in Transfer Learning using CNNs and freezing layers
  • Gain experience in a well-known classification problem using CNNs

 

Expected Preparation


Obligatory for Students

  • Theory and practice on CNN

Optional for Students

  • None.

References and background for students:

  • None.

Recommended for Teachers

  • None.

Lesson Materials


 


The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers

This Practical covers fundamental CNN development, training and testing. Three exercises of increasing difficulty will be administered, each of them covering a different aspect of CNNs. All the proposed solutions will be implemented in Python, using the PyTorch package. The proposed exercises consist in:

  • Exercise 1: the simple MNIST dataset will be used to train and test three simple CNNs composed respectively of one, two, and three convolutional layers. Pooling and batch normalisation will be also added to compare the different performances.
  • Exercise 2: a deep network (e.g., LeNet-5) pretrained on ImageNet will be loaded. Next, the performances on MNIST and CIFAR10 will be evaluated after a fine-tuning stage. Different experiments will be made, considering different conditions, such as fine-tuning all the layers or only the last ones.
  • Exercise 3: the filters of a learned network will be visualized.
  • Exercise 4: several datasets (such as CIFAR10 and SVHN) will be tested using other different architectures (such as ResNet and VGG16) and the final performances on the test sets will be evaluated.

Time schedule

Duration (min) Description Concepts Activity Material
40 Exercise 1: developing, training and testing simple CNNs on a simple dataset      
40 Exercise 2: loading a pre-trained model, evaluation after and before fine-tuning on common datasets      
20 Exercise 3: visualizing a subset of learned filters      
80 Exercise 3: comparing classification performances on different architectures and more complex data      

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Practical: Convolutional Neural Networks is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:18:08
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Tutorial: Regularization

https://maken.wikiwijs.nl/203708/Tutorial__Regularization

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open