Tutorial: Regularization

Tutorial: Regularization

Administrative information


 

Title Regularization Techniques
Duration 60 min
Module B
Lesson Type Tutorial
Focus Technical - Deep Learning
Topic Regularization Techniques

 

Keywords


Regularization, Callbacks, Gridsearch,

 

Learning Goals


  • Examine Weight initializers
  • Investigate bias
  • Apply dropout and noise
  • Impliment callbacks
  • Undertsand and implement a gridsearch
  • Apply non traditional overfitting techniques

 

Expected Preparation


Learning Events to be Completed Before

None.

Obligatory for Students

None.

Optional for Students

None.

References and background for students:

  •  
  • John D Kelleher and Brain McNamee. (2018), Fundamentals of Machine Learning for Predictive Data Analytics, MIT Press.
  • Michael Nielsen. (2015), Neural Networks and Deep Learning, 1. Determination press, San Francisco CA USA.
  • Charu C. Aggarwal. (2018), Neural Networks and Deep Learning, 1. Springer
  • Antonio Gulli,Sujit Pal. Deep Learning with Keras, Packt, [ISBN: 9781787128422].

Recommended for Teachers

None.

Lesson Materials


 


The materials of this learning event are available under CC BY-NC-SA 4.0.

 

  • The students will be expected to demonstrate and apply fundamental techniques/algorithms for the prediction and training of neural networks, including investigations for model bias and based around model regularisation. Compare, contrast and demonstrate appropriate hyper-parameters for training artificial neural networks with an emphasis on reproducibility (generalizability), transparency and interpretation. Use Deep Learning frameworks to implement Deep Learning models for classification and or regression tasks. This includes a strong focus on evaluation of the models, for performance and ethical considerations, resulting in transparency and explainable AI. This practical requires you to develop the most suitable AI model, where every suitable method for model development be employed to ensure the best generalization.
  • The tutorial is based on the following dataset [[1]] where the details of the attributes are contained in the lesson materials.
  • The tutorial will require the following headings. Where each heading should have (where appropriate) a rationale and description expanding the approach and its findings, code that executes the work, and in some cases a visual aid to further compound your findings. Use standard Jupyter notebook markdown, to crate headings and sections:
    • Introduction
    • Opening the dataset, Brief data exploration and data pre-processing
    • Model exploration to determine network topology
    • Hyperparameter investigation (learning parameters and optimization)
    • Most appropriate model selection
    • Grid search
    • Final Model presentation and performance evaluation
  • Please note the grid search will take some time, thus this may be completed outside of the tutorial time or the tutorial can be conducted in a flipped classroom mode of delivery.

Outline

Time schedule
Duration (Min) Description
10 Providing an overview of the practical and importing datasets with the basic pre-processing
10 Models to explore topologies
20 Hyperparameter investigation with regularisation techniques
10 Grid search (note this should be pre done - either by lecturer or students in flipped mode as it can take significant time to run live)
5 Final model discussion

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Tutorial: Regularization is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-05-15 11:22:11
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    .
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Tutorial: Hyperparameter tuning

    https://maken.wikiwijs.nl/203706/Tutorial__Hyperparameter_tuning

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.