Practical: Model Compression - Edge Computing

Practical: Model Compression - Edge Computing

Administrative information


Title

Model Compression
Duration 150 min
Module C
Lesson Type Practical
Focus Technical - Future AI
Topic Advances in ML models through a HC lens - A result Oriented Study  

 

Keywords


model compression, pruning, quantization, knowledge distillation,

 

Learning Goals


  • Understand how to implement techniques of model compression
  • Grasp the advantages of pruning, quantization and knowledge distillation
  • Becoming familiar with a high-level framework like TensorFlow

 

Expected Preparation


Learning Events to be Completed Before

Obligatory for Students

  • Basic understanding of model compression concepts and techniques
  • Basic understanding of how the performance of machine and deep learning models can be evaluated (e.g. accuracy, precision and recall, F score)
  • Knowledge of the Python programming language

Optional for Students

  • Knowledge of the TensorFlow framework

References and background for students

  • Knowledge of machine learning and neural networks theory

Recommended for Teachers

  • Recall knowledge of the TensorFlow framework and Python programming language
  • Provide a practical view on the implementations needed to leverage model compression techniques
  • Propose pop-up quizzes

Lesson materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


  • Give a brief overview of Tensorflow 2.x
  • Use Google Colab as working Jupyter Notebook for practical application
  • Students must use the indicated time allocated for each task.
  • Task 1 to Task 4 should be completed before the remaining tasks are assigned.

 

Outline


Duration Description Concepts Activity Material
0-10 min Introduction to tools used and how to make hands dirty in a second Tools introduction Introduction to main tools  
10-80 min [Task 1 - Task 3] Training a model and then? How to apply pruning and quantization to working models and compare performances Pruning & Quantization Practical session and working examples Colab Notebook
80-140 min [Task 4 - Task 6] When could be knowledge distillation useful? How to distill knowledge from teacher to student Knowledge Distillation Practical session and working examples Colab Notebook
140-150 min Conclusion, questions and answers Summary Conclusions  

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Practical: Model Compression - Edge Computing is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2023-12-03 12:08:40
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
copy this template and fill in
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Practical: Federated Learning - Train deep models

https://maken.wikiwijs.nl/202209/Practical__Federated_Learning___Train_deep_models

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open