Practical: Federated Learning - Train deep models

Practical: Federated Learning - Train deep models

Administrative information


Title

Federated Learning - Train deep models
Duration 150 min
Module C
Lesson Type Practical
Focus Technical - Future AI
Topic Advances in ML models through a HC lens - A result Oriented Study  

 

Keywords


Federated Learning,Tensorflow,

 

Learning Goals


  • Understand how to train models using the Federated Learning framework
  • Understand how local data distribution affects the federated learning
  • Becoming familiar with a high-level framework like TensorFlow

 

Expected Preparation


Obligatory for Students

  • Students should have a basic understanding of deep learning concepts and techniques
  • Basic understanding of deep learning training (SGD, backpropagation algorithm) and evaluation techniques

Optional for Students

  • A bit of knowledge of the TensorFlow framework and Python programming language

Lesson materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


  • Provide a hands-on lecture where students can learn from guided exercises
  • Propose pop-up quizzes

Outline


Duration Description Concepts Activity
20 min Introduction to the framework: how to code a simple federated learning system Tools introduction Introduction to main tools
60 min Federated Training: the easy way. How to apply train models with federated learning based on iid local data Federated Average Practical session and working examples
60 min Federated training: the hard way. How does heterogeneity affect Federated Average and what can we do Challenges connected to Federated Learning Practical session and working examples
10 min Conclusion, questions and answers Summary Conclusions

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Practical: Federated Learning - Train deep models is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-02-14 22:44:04
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    copy this template and fill in
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: Trust, Normativity and Model Drift

    https://maken.wikiwijs.nl/202206/Lecture__Trust__Normativity_and_Model_Drift

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Voor developers

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.