Lecture: Theory of Federated Learning (Profiling and Personalization)

Lecture: Theory of Federated Learning (Profiling and Personalization)

Administrative information


Title

Theory of Federated Learning (Profiling and Personalization)
Duration 45-60 min
Module C
Lesson Type Lecture
Focus Technical - Future AI
Topic Advances in ML models through a HC lens - A result Oriented Study  

 

Keywords


Federated Learning, knowledge-based system, privacy preservation,

 

Learning Goals


  • Provide the motivations for doing Federated Learning
  • Provide an initial understanding of the basic techniques for Federated Learning
  • Discuss the main limitations and the challenges connected to them

 

Lesson materials


The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


  • Provide an overview of the techniques, their pros and cons
  • Propose pop-up quizzes

The learning event shall refer to model types, their evaluation and possible optimization techniques.

 

 

Outline


Duration Description Concepts
10 min Introduction: Motivating scenario and introduction to federated learning: what it is, what it is for, when and why it is needed. Data gravity, data privacy and the definition of enabling scenario.
10 min Federated Learning: basic concepts, system definition and algorithmic overview Basic notions of the Federated Learning approach
15 min Federated Average algorithm: Formal definition and properties Basic algorithm for federated learning
20 min Beyond federated average: limitations of federated average, challenges and possible solutions. Data imbalance, personalisation, fairness
5 min Conclusion, questions and answers Summary

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Lecture: Theory of Federated Learning (Profiling and Personalization) is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-02-14 22:40:47
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    copy this template and fill in
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: Semi-supervised and Unsupervised Learning

    https://maken.wikiwijs.nl/202203/Lecture__Semi_supervised_and_Unsupervised_Learning

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.