Lecture: Convolutional Neural Networks

Lecture: Convolutional Neural Networks

Administrative information


Title Convolutional Neural Networks
Duration 60 min
Module B
Lesson Type Lecture
Focus Technical - Deep Learning
Topic

Deep learning

 

Keywords


CNN,Python,Deep Learning,

 

Learning Goals


  • To know what is a CNN and its main differences with Densely-connected NN
  • To know the main difference between Locally-Connected Layers to Convolutional ones
  • To know how to configure a CNN layer
  • Pooling and batch normalization layers
  • To know the most famous CNNs: LeNet, AlexNet, ResNet, VGG16, AllConvNet

 

Expected Preparation


Learning Events to be Completed Before

  • None

Obligatory for Students

  • Theory on Artificial Neural Networks

Optional for Students

  • None

References and background for students:

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. - Chapter 9

Recommended for Teachers

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. - Chapter 9

Lesson Materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


This lecture will introduce students to the Convolutional Neural Networks (CNNs), explaining the main differences between classical Fully-Connected layers and Convolutional ones. The advantages of the weight sharing given by the Convolutional Layer are introduced and discussed, together with a comparison with the Locally-Connected layers. The Convolution operator is introduced, and kernel size, stride and padding are discussed as the main hyperparameters of a Convolutional layer. Then, Pooling and Batch Normalization layers will be introduced as part of several CNN architectures. To better undestand what a Convolutional layer has learned, possible ways to visualize learned filters will be introduced. Finally, an introduction to the most famous CNN architectures such as NetworkInNetwork and LeNet will be presented.

  • Introduction to CNNs
    • Main issues about fully-connected layers for high-dimensionality data
    • Convolutional operator
    • Description of a Convolutional layer in terms of neurons
  • Convolutional layers
    • Main properties of a Convolutional layer
      • Local connectivity
      • Weight sharing
    • Convolutional layer hyperparameters
      • Filter size
      • Stride
      • Padding
  • Pooling layers
  • Visualizing layers
  • Well-known architectures
    • LeNet
    • NiN

Time schedule

Duration (min) Description Concepts Activity Material
10 Introduction to CNNs      
15 Convolutional layers      
5 Pooling layers      
15 Visualizing layers      
15 Well-known architectures      

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Lecture: Convolutional Neural Networks is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-05-15 11:12:45
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    .
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: Building computational graphs, modern architectures

    https://maken.wikiwijs.nl/200291/Lecture__Building_computational_graphs__modern_architectures

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.