Lecture: ML-Ops

Lecture: ML-Ops

Administrative information


Title Serving Production Models
Duration 60 min
Module B
Lesson Type Lecture
Focus Practical - Organisational AI
Topic

Serving a production model

 

Keywords


containarization,

 

Learning Goals


  • Overview of Containerisation
  • Introduction to TFX Serving
  • Serving models Locally and Serving on Azure Container Instances

 

Expected Preparation


Learning Events to be Completed Before

None.

Obligatory for Students

Optional for Students

None.

References and background for students:

None.

Recommended for Teachers

None.

Lesson Materials


 


The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


This Lecture will provide an overview/foundation for Serving Tensorflow models. The lecture will provide some foundations and background (including some code snippets) that will be required for the following tutorial that will put into practice the MLOps process of Serving a model for production purposes. Specifically the lecture will cover:

  • The development of a exemplar model using the Stanford Dogs dataset
  • Saving the model and the format of the saved model
    • Tensorflow TFX Serving overview
    • The APIs TFX Serving uses (gRPC and Restful)
  • Containerisation
    • Docker containers overview
    • Tensorflow Serving Docker Image
  • Serving a model to a local IP address
    • Taking a Docker image and creating and running a Docker container binding the Tensorflow model in transit
  • Serving a Model using Azure Container Instances (ACI)
    • Taking a Docker image and creating and running a Docker container, and binding a Tensorflow model.
    • Committing the Docker Container with the model saved as a new Docker Image.
    • Running the new image as a Docker Container in ACI - using the Docker CLI.

Outline


 
Time schedule
Duration (Min) Description
10 Introduction to the exemplar model used in the lecture and tutorial
15 Saving the model, and overview of TFX serving toolkit and the APIs that TFX serving uses
10 An overview of Containerisation
10

Serving the model locally

15 Serving the model on ACI

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Lecture: ML-Ops is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-05-15 11:15:11
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    .
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: CI/CD

    https://maken.wikiwijs.nl/200238/Lecture__CI_CD

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.