Practical: Model Fitting and Optimization

Practical: Model Fitting and Optimization

Administrative information


Title Model Fitting and Optimization
Duration 150-180 min
Module A
Lesson Type Practical
Focus Technical - Foundations of AI
Topic Fitting and Optimization

 

Keywords


model fitting,optimization,binary classification,regression,

 

Learning Goals


  • Visualise and scale the features and labels to simply the classification problem.
  • Use the metrics to evaluate the classification model.
  • Tune the hyperparameters to improve the model performance.

 

Expected Preparation


Obligatory for Students

  • Students should have hands-on experience in python programming
  • Students should have good understanding of Data exploration techniques
  • Students should have reviewed lectures and demonstration on topics of Model Types, Model Evaluation, Model Fitting and Model Optimization

Optional for Students

None.

References and background for students:

None.

Recommended for Teachers

Lesson Materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


Follow the steps in the Colab.

Outline of lecture


 
Duration (min) Description Activity Material
0-15 min A brief overview of the tasks and learning goals Instructions by the lecturer colab practical link for lecturer
15 - 40 min Task 1 - Explore the dataset - Visualise and summarise the findings. Normalize and label the target variable. Reporting - investigation of data (bias, redundancy, ethical)
40 - 75 min Task 2 - Model Evaluation - Model Evaluation based on Train and Test data. Coding
75 - 105 min Task 3 - Model Optimization - Use hyperparameter tuning and modify the threshold to improve the performance. Coding
105 - 135 min Task 4 - Model Optimization - Summarise the model performance of Task 3 Reporting - Summary
135-150 min Summary of the practical Conclusion by the lecturer

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Practical: Model Fitting and Optimization is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:06:47
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Duty Ethics

https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open