Lecture: Understanding data

Lecture: Understanding data

Administrative information


Title Understanding Data
Duration 60
Module A
Lesson Type Lecture
Focus Technical - Foundations of AI
Topic Understanding Data

 

Keywords


data types,data transformation,data visualisation,

 

Learning Goals


  • Learner acquires demonstrable knowledge of data forms used in AI.
  • Learner can talk about data using the right terminology (e.g., features, variables, observations).
  • Learner knows the different data types and knows how to transform them (e.g., nominal, ordinal).
  • Learner knows the most common measures for data description (e.g., mean, median, standard deviation) and knows how to calculate them.
  • Learner acquires demonstrable knowledge of how data are described via measures and visualisation.
  • Learner knows the most common graphs and knows how to pick a visualisation, matching the given data.

 

Expected Preparation


Learning Events to be Completed Before

None.

Obligatory for Students

None.

Optional for Students

None.

References and background for students:

None.

Recommended for Teachers

None.

Lesson Materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


In this lecture we introduce the students to data (and determine the correct terminology). This lecture has no prerequisites. It can be followed by the tutorial on data understanding. See the lesson plan: Tutorial: Understanding Data

Topics to cover

  • Introduction to what data are, how they can be useful and in what form they are used in AI (15mins)
  • Introduction to data types and transformations (15mins)
  • Measures for data description (15mins)
  • Data visualisation (15mins)

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Lecture: Understanding data is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-05-15 11:05:14
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    .
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: Duty Ethics

    https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.