Practical: Data Preparation and Exploration

Practical: Data Preparation and Exploration

Administrative information


Title Lab session: Data Preparation
Duration 180
Module A
Lesson Type Practical
Focus Practical - AI Modelling
Topic Data preparation methods

 

Keywords


filtering,missing values,duplicates,Data Preparation,Data Cleaning,Data Transformation,Data Normalization,Data Integration,Data Reduction,

 

Learning Goals


  • To prove to be able to use different data preparation techniques
  • is able to identify basic statistics of all features in a given dataset
  • is able to calculate basic statistics per group

 

Expected Preparation


Obligatory for Students

None.

Optional for Students

None.

References and background for students:

None.

Recommended for Teachers

None.

Lesson Materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


This learning event consist of laboratory tasks that shall be solved by the students with the help of the leading instructor.

Outline/time schedule


 
Duration (min) Description Concepts
5 Outline Overall goal: document how you struggle with data during preparation
14 Dataset Census/reconstruction
20 Data Preparation filtering, missing values, duplicates,
20 Data Cleaning example Fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset
20 Data Transformation example Converting data from one format to another, best practices.
20 Data Normalization example Data normalization best practices.
25 Data Integration example Data integration best practices.
25 Data Reduction example Data Reduction best practices.

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Practical: Data Preparation and Exploration is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:06:17
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Duty Ethics

https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open