Lecture: Data Preparation and Exploration

Lecture: Data Preparation and Exploration

Administrative information


Title Preparation and Exploration
Duration 60
Module A
Lesson Type Lecture
Focus Practical - AI Modelling
Topic Data preparation methods

 

Keywords


Data Preparation,Data Cleaning,Data Transformation,Data Normalization,Data Integration,Data Reduction,

 

Learning Goals


  • To be able to chose the most suited data preparation method based on the case
  • prepare data in practice (handle missing values, create new derived features)
  • Data enrichment
  • Ethical: anonymisation and problems with this (identification possible in indirect ways) - again, there should be some examples out there
  • Imputation – mention that it can introduce bias and that this needs to be kept in mind
  • New feature creation – loss of proper semantics
  • Ethical: remove bias from the dataset
  • Parallels and differences between sampling of data in statistics and acquisition of data (including big data) for ML and AI

 

Expected Preparation


Obligatory for Students

  • N/A

Optional for Students

  • N/A

References and background for students:

  • N/A

Recommended for Teachers

Lesson Materials


 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


You can base this class around the slides.

Outline


 
Duration (min) Description Concepts
5 Outline Data preparation methods: what's the point?
5 Problems / Preprocessing What problems can the data have, cleaning, purification
5 Data Preparation Cleaning, transformation, integration, normalization, imputation, noise identification
5 Data Preparation in detail Forms of data preparation
10 Data Cleaning in detail Fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset
10 Data Transformation in detail Converting data from one format to another, best practices.
5 Data Normalization in detail Data normalization best practices.  
5 Data Integration in detail Data integration best practices.
5 Data Reduction in detail Data Reduction best practices.
10 Data preparation in practice Filtering, missing values, duplicates,
5 Concluding remarks Emphasizing the importance of data preparation.

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Data Preparation and Exploration is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 10:58:40
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Duty Ethics

https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open