Lecture: The Data Analysis Process

Lecture: The Data Analysis Process

Administrative information


Title The Data Analysis Process
Duration 45
Module A
Lesson Type Lecture
Focus Practical - AI Modelling
Topic Data Mining, Data Analysis

 

Keywords


Data Mining,Information Mining,CRISP-DM,IEEE 70xx,

 

Learning Goals


  • To be able to demonstrate knowledge of the data analysis process
  • To understand differences between methodologies and standards

 

Expected Preparation


Learning Events to be Completed Before

Obligatory for Students

  • Slides of the lecture

Optional for Students

  • Any source and brief extract of the IEEE 70xx

References and background for students:

  • N/A

Lesson Materials


The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


Topics to be covered

  • Introduction to what a data is
    • Why Data is important (1 min)
    • Data, Information, Knowledge (1 min)
    • A possible definition for Data (1 min)
    • Quantitative vs Qualitative Data (1 min)
    • Quantitative vs Qualitative Analysis (1 min)
  • The stage of Data Analysis
    • The Data Analysis process (5 min)
    • Defining the question (2 min)
    • Collecting and Extracting the Data (2 min)
    • Cleaning and Transforming the Data (2 min)
    • Analyzing the Data (2 min)
    • Share the results (2 min)
  • Recent Trends in Data Mining
    • Data Mining and Common Uses (1 min)
    • Data Mining & Machine Learning (1 min)
    • Data & Patterns (1 min)
    • Data Mining techniques (1min)
    • Data Mining Recent Applications (1 min)
    • CRISP-DM (CRoss Industry Standard Process for Data Mining) methodology (1 min)
  • CRISP-DM (CRoss Industry Standard Process for Data Mining) methodology
    • Introduction (2 min)
    • Business Understanding (1 min)
    • Data Understanding (1 min)
    • Data Preparation (1 min)
    • Modeling (1 min)
    • Evaluation (1 min)
    • Deployment (1 min)
    • Is CRISP-DM Agile or Waterfall? (2 min)
  • The IEEE 70xx standard
    • IEEE Standard Model Process for Addressing Ethical
    • Concerns during System Design (10 min)

Time schedule

Expected time schedule and concepts organization
Duration (min) Description Concepts Activity
5 Introduction to what data is Data, Information, Knowledge,

Quantitative vs Qualitative Data,

Quantitative vs Qualitative Analysis

Lecture
15 The stages of data analysis (e.g., extraction, exploration, visualization) Multi-stage Data Analysis process, Collection,

Extraction, Exploration, Cleaning, Analysis,

Visualization, Sharing Results

Lecture
5 Recent trends in data mining Data Mining modern applications Lecture
10 CRISP-DM (Cross Industry Standard Process for Data Mining) methodology CRISP-DM phases, Business Understanding,

Data Understanding, Modeling, Evaluation, Deployment

Lecture
10 The IEEE 70xx standard Ethical Issues, System Design Lecture

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

  • Het arrangement Lecture: The Data Analysis Process is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-05-15 11:04:40
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    .
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    HCAIM Consortium. (z.d.).

    Acknowledgement

    https://maken.wikiwijs.nl/198386/Acknowledgement

    HCAIM Consortium. (z.d.).

    Lecture: Duty Ethics

    https://maken.wikiwijs.nl/198966/Lecture__Duty_Ethics

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.