Platonic Solids

Platonic Solids

Platonic Solids

Platonic solids are 3D shapes. A platonic solid is constructed out of congruent and regular polygonal faces.

This means that all the polygonal faces have the same size and shape (congruent) and the angles and sides of those faces are the same (regular).
Furthermore at each vertex the same number of sides meet.

Because of these unique properties mathematicians have studied these solids for thousands of years.

They are named after the philosopher Plato, who lived in ancient Greece. These solids are prominent in his philosophy. He thought that these solids made up our universe. He associated these regular solids with the elements: earth, fire, water and wind. Though there was a fifth regular solid Plato never really mentioned an element to associate it with. He just said it was what "...the god used for arranging the constellations on the whole heaven". It was another philosopher Aristotle who associated aether with the fifth platonic solid.

Euclid, a brilliant mathematician, whose work has been instrumental in the development of logic and modern science, completely mathematically described the 5 platonic solids in his book elements.

Tetrahedron

Plato associated the tetrahedron with fire, because the heat of fire feels sharp and stabbing like the tetrahedron.

The tetrahedron is a platonic solid consists of 4 congruent triangles.
It has 6 edges and 4 vertices. At each vertex 3 faces meet.

This is the simplest and smallest of the platonic solids. It is a kind of pyramid

 

 

The tetrahedron has 2 possible nets:

To view the 3D version:
https://www.mathsisfun.com/definitions/tetrahedron.html

 

How to make the net:

Hexahedron

Plato associated the hexahedron with earth, because these clumsy little solids cause dirt to crumble and break when picked up, in stark difference to the smooth flow of water

The hexahedron is a platonic solid consists of 6 congruent squares.
It has 12 edges and 8 vertices. At each vertex 3 faces meet.

This is the second smallest platonic solid. It's a cube.

 

 

 

 

It has 11 possible nets:

To view the 3D version:
https://www.mathsisfun.com/definitions/hexahedron.html

 

How to make the net:

 

Octahedron

Plato associated the octahedron with air, because its minuscule components are so smooth that one can barely feel it.

The octahedron is a platonic solid consists of 8 congruent triangles.
It has 12 edges and 6 vertices. At each vertex 4 faces meet.

It looks like two pyramids with their bases together.

 

 

It has 11 possible nets:

To view the 3D version:
https://www.mathsisfun.com/definitions/octahedron.html

 

How to make the net:

Icosahedron

Plato associated the icosahedron with water, because it  flows out of one's hand when picked up, as if it is made of tiny little balls

The icosahedron is a platonic solid made out of 20 congruent triangles.
It has 30 edges and 12 vertices. At each vertex 5 faces meet.

 

 

 

It's net:

 

To view the 3D version:
https://www.mathsisfun.com/definitions/icosahedron.html

Dodecahedron

Plato associated the dodecahedron with the element that god used to arrange the constellations of the whole heaven. It was Aristotle that called this aether

The dodecahedron is a platonic solid made out of 12 congruent pentagons.
It has 30 edges and 20 vertices. At each vertex 3 faces meet.

 

 

 

It's net:

To view the 3D version:
https://www.mathsisfun.com/definitions/dodecahedron.html

  • Het arrangement Platonic Solids is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Auteur
    Denise Norton Je moet eerst inloggen om feedback aan de auteur te kunnen geven.
    Laatst gewijzigd
    2020-09-30 07:40:10
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten
  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.