Bij een rechte lijn hoort een formule.
Zo'n formule heeft een vaste vorm, met een hellingsgetal en een startgetal.
In deze paragraaf ga je de formule in veel verschillende omstandigheden opstellen.
Ook ga je waarden aflezenuit een getekende rechte lijn.
Maar je zal ook met meer formules tegelijk werken.
In sommige gevallen moeten variabelen namelijk aan meerdere eisen voldoen, bijvoorbeeld 'er zijn in totaal \(\small 15\) appels en peren' en 'er zijn twee keer zo veel appels als peren'.
In zo'n geval kun je formules opstellen om vervolgens de juiste waarden voor de variabelen berekenen.
Opgaven
Formule
Omschrijven
Verf
Kroon
Munten
Rechte lijnen
Herhaling uit de derde klas
De grafiek van de vergelijking \(\small y=ax+b\) is een rechte lijn.
De factor \(\small a\) (waarmee \(\small x\) wordt vermenigvuldigd) is de richtingscoëfficiënt van de lijn.
Als de \(\small x\) met \(\small 1\) toeneemt, dan neemt de \(\small y\) met \(\small a\) toe.
Het getal \(\small b\) is de tweede coördinaat van het snijpunt van de lijn met de \(\small y\)-as.
(\(\small a\) wordt ook wel het hellingsgetal en \(\small b\) het startgetal genoemd.)
Voorbeeld:
Gevraagd wordt de vergelijking van de lijn die door de punten \(\small A(3,4)\) en \(\small B(\text{-}5,6)\) gaat.
Oplossing
Bepaal eerst de richtingscoëfficiënt: \(\small a= \Delta y\Delta x={6−4 \over \text{-}5−3}={2\over \text{-}8}=\text{-}{1 \over 4}\).
Je weet nu: \(\small y=\text{-}{1\over 4}x+b\).
Bepaal \(\small b\) door de coördinaten van bijvoorbeeld punt \(\small A\) in te vullen: \(\small 4=\text{-}{1\over 4}\cdot 3+b\), dus \(\small b=4{3\over 4}\).
Het antwoord: \(\small y=\text{-}{1\over 4}x+4{3\over 4}\).
Controleer je antwoord met behulp van punt \(\small B\): \(\small \text{-}{1\over 4}\cdot \text{-}5+4{3\over 4}=1{1\over 4}+4{3\over 4}=6\) en dat klopt.
Het arrangement Formules van rechte lijnen is gemaakt met
Wikiwijs van
Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt,
maakt en deelt.
Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:
het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
voor alle doeleinden, inclusief commerciële doeleinden.
Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:
Toelichting
Deze les valt onder de arrangeerbare leerlijn van de Stercollectie voor wiskunde B voor havo leerjaar 4. Dit is thema ’Hellingen'. Het onderwerp van deze les is: formules van rechte lijnen.
Bij een rechte lijn hoort een formule.
Zo'n formule heeft een vaste vorm, met een hellingsgetal en een startgetal.
In deze paragraaf ga je de formule in veel verschillende omstandigheden opstellen.
Ook ga je waarden aflezen uit een getekende rechte lijn.
Maar je zal ook met meer formules tegelijk werken.
In sommige gevallen moeten variabelen namelijk aan meerdere eisen voldoen, bijvoorbeeld 'er zijn in totaal 15
appels en peren' en 'er zijn twee keer zo veel appels als peren'.
In zo'n geval kun je formules opstellen om vervolgens de juiste waarden voor de variabelen berekenen.
Leerniveau
HAVO 4;
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten
Trefwoorden
arrangeerbaar, formules, havo 4, helling, rechte lijn, stercollectie, wiskunde b
Deze les valt onder de arrangeerbare leerlijn van de Stercollectie voor wiskunde B voor havo leerjaar 4. Dit is thema ’Hellingen'. Het onderwerp van deze les is: formules van rechte lijnen.
Bij een rechte lijn hoort een formule.
Zo'n formule heeft een vaste vorm, met een hellingsgetal en een startgetal.
In deze paragraaf ga je de formule in veel verschillende omstandigheden opstellen.
Ook ga je waarden aflezen uit een getekende rechte lijn.
Maar je zal ook met meer formules tegelijk werken.
In sommige gevallen moeten variabelen namelijk aan meerdere eisen voldoen, bijvoorbeeld 'er zijn in totaal 15
appels en peren' en 'er zijn twee keer zo veel appels als peren'.
In zo'n geval kun je formules opstellen om vervolgens de juiste waarden voor de variabelen berekenen.
Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten
terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI
koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI
koppeling aan te gaan.
Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.
Arrangement
IMSCC package
Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.
Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en
het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op
onze Developers Wiki.