De helling van een lijn geeft aan hoe steil de lijn loopt. In de onderbouw heb je ook al het begrip hellingsgetal gehoord bij een rechte lijn. Maar vanaf nu noemen we dat de richtingscoëfficiënt.
Je zult zien dat de steilte van een lijn op verschillende manieren kan worden bepaald.
Je gaat in dit hoofdstuk aan de slag met het berekenen van de richtingscoëfficiënt in verschillende omstandigheden. Ook ga je de formule van een rechte lijn opstellen en hellingshoeken en -percentages berekenen.
Verder leer je ook over verschillende soorten verandering.
Paragrafen
Hieronder vind je per paragraaf een knop met een link naar het betreffende arrangement.
De verticale verplaatsing is de toename van de tweede coördinaat \(\small y\); die noemen we \(\small \Delta y\).
De horizontale verplaatsing is de toename van de eerste coördinaat \(\small x\); die noemen we \(\small \Delta x\).
De richtingscoëfficiënt (\(\small rc\) of \(\small rico\)) van de lijn wordt gegeven door \(\small{\Delta y \over \Delta x}\).
Een verticale lijn heeft geen richtingscoëfficiënt.
De grafiek van de vergelijking \(\small y=ax+b\) is een rechte lijn.
De factor \(\small a\) (waarmee \(\small x\) wordt vermenigvuldigd) is de richtingscoëfficiënt van de lijn.
De richtingscoëfficiënt geeft aan hoeveel de \(\small y\) verandert als de \(\small x\) met één toeneemt.
Het getal \(\small b\) is de tweede coördinaat van het snijpunt van de lijn met de \(\small y\)-as. \(\small a\) wordt ook wel het hellingsgetal en \(\small b\) het startgetal genoemd.
Voorbeeld:
Bereken de vergelijking van de lijn die door de punten \(\small A(3,\text{-}3)\) en \(\small B(\text{-}6,\text{-}9)\) gaat.
Oplossing
Bepaal eerst de richtingscoëfficiënt: \(\small a={\Delta y \over \Delta x}={\text{-}3- \text{-}9 \over 3−\text{-}6}={6 \over 9}={2 \over 3}\).
Je weet nu: \(\small y={2 \over 3}x+b\).
Bepaal \(\small b\) door de coördinaten van bijvoorbeeld punt \(\small A\) in te vullen: \(\small \text{-}3={2\over 3}\cdot3+b\), dus \(\small b=\text{-}5\).
Het antwoord: \(\small y={2 \over 3}x - 5\).
Controleer je antwoord met behulp van punt \(\small B\): \(\small {2 \over 3} \cdot \text{-}6-5=\text{-}4-5=\text{-}9\) en dat klopt.
Hellingshoek, richtingscoëfficiënt en hellingspercentage
\(\small \alpha\) is de hellingshoek van een rechte lijn; \(\small \alpha \ne 90° \).
Dan geldt: \(\small \text{richtingscoëfficiënt = tan}(\alpha)\).
Voor een helling geldt: \(\small \text{hellingspercentage}= {\text{hoogteverschil} \over \text{afstand horizontaal}} \cdot 100\%. \)
Voor een helling met hellingshoek \(\small \alpha\) geldt:
Vergelijkingen van de vorm \(\small ax+by=c\) geven als grafiek ook rechte lijnen.
\(\small a=0\) geeft een horizontale lijn.
\(\small b=0\) geeft een verticale lijn.
Door de formule om te schrijven in de vorm \(\small y= \ldots\) krijg je: \(\small rc= \text{-}{a \over b}\)
Punten \(\small P\), \(\small Q\) en \(\small R\) liggen op een lijn als geldt \(\small rc_{PQ}=rc_{QR} (=rc_{PR})\).
Snijpunten van twee rechte lijnen bereken je door beide vergelijkingen in de vorm \(\small y= \ldots\) te schrijven en dan aan elkaar gelijk te stellen.
Of door de ene vergelijking in de andere te substitueren.
Voorbeeld:
Bereken de coördinaten van het snijpunt van de lijnen met vergelijkingen \(\small 3x+4y=9\) en \(\small 5x−2y=\text{-}11\).
Oplossing (beide omzetten)
Omschrijven: \(\small y=\text{-}{3 \over 4}x+{9 \over 4} \) en \(\small y=2{1\over 2}x+5{1 \over 2}\)
Gelijkstellen: \(\small 2{1 \over 2}x+5{1 \over 2}=\text{-}{3 \over 4}x+{9 \over 4}\)
Breuken weg (alles keer \(\small 4\)): \(\small 10x+22=\text{-}3x+9\)
Verder oplossen: \(\small \rightarrow 13x=\text{-}13 \rightarrow x=\text{-}1\)
Invullen in één van beide vergelijkingen geeft \(\small y=3\).
Antwoord: het snijpunt is \(\small (\text{-}1,3)\). Oplossing (substitutie-methode)
Tweede vergelijking omschrijven: \(\small y=2{1\over 2}x+5{1 \over 2}\)
Substitueren: \(\small 3x+4(2{1 \over 2}x+5{1 \over 2})=9\)
Verder oplossen: \(\small \rightarrow 3x+10x+22=9 \rightarrow \ldots \rightarrow x=\text{-}1\)
Invullen in \(\small y=2{1\over 2}x+5{1 \over 2}\) geeft \(\small y=3\).
Antwoord: het snijpunt is \(\small (\text{-}1,3)\).
Helling van een grafiek
De gemiddelde helling van een grafiek tussen twee punten bereken je door de richtingscoëffciënt te berekenen van het lijnstukje dat de twee punten met elkaar verbindt.
De helling in een punt op een grafiek bepaal je door in dat punt de raaklijn te tekenen en van deze raaklijn de richtingscoëfficiënt te berekenen.
We kennen 6 soorten van stijgen en dalen:
Diagnostische toets
Eindtoets over het thema; in principe de zelftoets.
Je gaat nu een aantal gevarieerde opgaven maken waarin je kunt laten zien of je de geleerde stof uit de voorgaande paragrafen beheerst.
Dit zijn voorbeeldopgaven die een goed beeld geven van de opgaven die in een eindtoets over dit thema voor kunnen komen.
Als je een score van 70% haalt, heb je een voldoende.
De onderstaande antwoorden moet je zelf nakijken; vergelijk jouw antwoorden met de goede
antwoorden, en geef aan in welke mate jouw antwoorden correct zijn.
Het arrangement Thema: Hellingen - 4H Wiskunde B is gemaakt met
Wikiwijs van
Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt,
maakt en deelt.
Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:
het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
voor alle doeleinden, inclusief commerciële doeleinden.
Dit thema is ontwikkeld door auteurs en medewerkers van de Wageningse Methode.
Fair Use
In de Stercollecties van VO-content wordt gebruik gemaakt van beeld- en filmmateriaal dat beschikbaar is op internet. Bij het gebruik zijn we uitgegaan van fair use. Meer informatie: Fair use
Mocht u vragen/opmerkingen hebben, neem dan contact op via de helpdesk VO-content.
Aanvullende informatie over dit lesmateriaal
Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:
Toelichting
Deze les valt onder de arrangeerbare leerlijn van de Stercollectie voor wiskunde B voor havo leerjaar 4. Dit is thema ’Hellingen'.
Je gaat in dit hoofdstuk aan de slag met het berekenen van de richtingscoëfficiënt in verschillende omstandigheden. Ook ga je de formule van een rechte lijn opstellen en hellingshoeken en -percentages berekenen.
Verder leer je ook over verschillende soorten verandering.
Leerniveau
HAVO 4;
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Trefwoorden
arrangeerbaar, havo 4, helling, hellingshoek, hellingspercentage, rechte lijn, stercollectie, verandering, wiskunde b
Deze les valt onder de arrangeerbare leerlijn van de Stercollectie voor wiskunde B voor havo leerjaar 4. Dit is thema ’Hellingen'.
Je gaat in dit hoofdstuk aan de slag met het berekenen van de richtingscoëfficiënt in verschillende omstandigheden. Ook ga je de formule van een rechte lijn opstellen en hellingshoeken en -percentages berekenen.
Verder leer je ook over verschillende soorten verandering.
Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten
terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI
koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI
koppeling aan te gaan.
Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.
Arrangement
Oefeningen en toetsen
H1 Hellingen
Terugblik
IMSCC package
Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.
Oefeningen en toetsen van dit arrangement kun je ook downloaden als QTI. Dit bestaat uit een ZIP bestand dat
alle
informatie bevat over de specifieke oefening of toets; volgorde van de vragen, afbeeldingen, te behalen
punten,
etc. Omgevingen met een QTI player kunnen QTI afspelen.
Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en
het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op
onze Developers Wiki.