§3 Vlakke figuren 1

§3 Vlakke figuren 1

§3 Vlakke figuren; vierkant, rechthoek, parallellogram en ruit

Uitleg

Vlakke figuren

In de wiskunde wordt een meetkundige figuur in een platvlak (twee dimensionaal 2D)  een vlakke figuur genoemd. Vlakke figuren zijn gesloten figuren.

Voorbeeld:

Een vierkant is een vlakke figuur het figuur is 2d, plat.

  1. Het vierkant heeft vierhoekpunten A, B, C, D.
  2. Een vierkant heeft vier zijden: AB, BC, CD en AD.
  3. Alle zijden van het vierkant zijn even lang.
  4. Alle hoek van het vierkant zijn (lood)recht.
  5. De diagonalen van een vierkant staan loodrecht op elkaar.
  6. De diagonalen delen elkaar door midden.

Om de verschillende vlakke figuren uit elkaar te kunnen houden moeten we dus iets weten over de eigenschappen (kenmerken) van de vlakke figuren. Eigenschappen (of kenmerken genoemd) zijn regeltjes waar een figuur aan voldoet.

Afbeeldingsresultaat voor vlakke figuren

Bekijk de vlakke figuren hiernaast goed en leer de namen en de kenmerken (eigenschappen) ervan uit je hoofd. Zodat je deze gemakkelijk van elkaar kunt onderscheiden. De eigenschappen (kenmerken) van de verschillende figuren vindt je in de link  

 

In deze paragraaf bestuderen we de eigenschappen van een vierkant, rechthoek, ruit en het parallellogram. We gaan er van uit dat je de eigenschappen van deze vier uit je hoofd kunt opnoemen. Je kunt hiervoor de samenvatting gebruiken die onder het plaatje te downloaden is.

 

Download hier de samenvatting van de eigenschappen van de vlakke figuren.

 

Opgaven

1H02. opgaven................................................................................................................................................

  Vierkant

4 Opgaven ................................

  1. Teken op je ruitjespapier een vierkant waarvan de zijde 5 cm zijn.
    Zorg er voor dat alle hoeken netjes recht zijn.
  2. Zet de letters P Q R S bij de hoekpunten. (je vierkant heet nu vierkant PQRS).
  3. Welke zijde ligt tegenover zijde PQ, noteer de letters van die zijde op je ruitjespapier.
  4. Welk hoekpunt is het overliggende hoekpunt van R?
  5. Zet even lang tekentjes in zijden die even lang zijn.
  6. Zet evenwijdig tekentjes in zijden die evenwijdig zijn.
  7. Teken de diagonalen in je vierkant.

 

  Rechthoek.

4 Op

Bekijk de rechthoek hiernaast, beantwoord dan de vragen. Schrijf de antwoorden op je ruitjespapier op.

  1. Welke zijde is gekleurd?
  2. Welke zijden zijn evenwijdig, noteer 2 paren.
  3. Er is een foutje gemaakt bij deze rechthoek. Schrijf op wat er fout is gegaan.
  4. Welke zijde is even lang als zijde RU, hoe kun je dit in één oogopslag zien?
  5. Welke letter staat er bij het snijpunt van de diagonalen?
  6. Nu je goed naar de eigenschappen van een vierkant en een rechthoek hebt gekeken, beantwoord dan de volgende stelling eens.
    "Een vierkant is een bijzondere rechthoek, maar een rechthoek is geen vierkant. Hoe kan dat nou? "

 

  Parallellogram.

4 Op

Een ander woord voor evenwijdig, is parallel.

  1. Verklaar nu eens waar de naam parallellogram vandaan komt  (nadat je de regel hierboven gelezen hebt natuurlijk!)
  2. Teken de volgende punten in een passend assenstelsel:
    A(2,1), B(5,1), C(8, 5) en D ....
  3. De hoekpunten horen bij parallellogram ABCD. Maak het parallellogram af.
  4. Welke zijde is de overliggende zijde van BC.
  5. Zijn alle zijden van het parallellogram even lang?
  6. Teken met groen kleurpotlood de diagonalen in het parallellogram.
  7. Meet na of er bij het snijpunt van de diagonalen rechte hoeken ontstaan.
  8. Zet in de zijden die evenwijdig zijn, evenwijdig tekentjes.
  9. Zet in de zijden die evenlang zijn, even lang tekentjes.

 

Meerkeuze vragen

 

Beantwoord de vragen op je werkblad.

 

 

Voorbeeld 1

 

 

Kleur en teken de figuren zoals aangegeven op je werkblad

 

 

  Eigenschappen

 

 

Schrijf de naam van de juiste vierhoek bij iedere omschrijving. Kies uit: vierkant, rechthoek, ruit of parallellogram 

 

  1. Deze vlakke figuur heeft vier hoekpunten, 4 even lange zijden maar de 4 hoeken zijn niet recht.
    Deze figuur noemen we een ……………………………………………… .
  2. Deze vlakke figuur heeft 4 hoekpunten, zijden die tegenover elkaar liggen zijn evenwijdig, de zijden die tegenover elkaar liggen zijn ook even lang.
    Deze figuur noemen we een ……………………………………………… .
  3. Deze vlakke figuur heeft vier hoekpunten, alle hoeken zijn recht en alle zijden zijn even lang.
    Deze figuur noemen we een ……………………………………………… .
  4. Deze vlakke figuur heeft 4 rechte hoeken. De 4 zijden zijn niet even lang.
    Deze figuur noemen we een ………………………………………………

 

Figuren herkennen

 

Je ziet op je werkblad zes vlakke figuren op een rooster.

  1. Schrijf bij elke figuur de juiste naam.
  2. Teken in elke figuur de diagonalen.
  3. Geef in elke figuur met behulp van tekentjes (zie Uitleg) bij de diagonalen aan welke hoeken recht zijn en welke lijnstukken gelijk zijn.
  4. Welke figuur heeft geen diagonalen?
  5. Bij welke figuren zijn de diagonalen even lang?

 

Ruit

 

  1. Zet de letters A tot en met D bij de hoekpunten.
  2. Teken de diagonalen van de ruit en zet S bij het snijpunt van de diagonalen.
  3. Welke lijnstukken zijn de diagonalen?
  4. Zijn de diagonalen even lang?
  5. Staan de diagonalen loodrecht op elkaar?

 

 

 

Vierkanten

 

A en B zijn hoekpunten van vierkant ABCD.

  1. Teken vierkant ABCD. *tip gebruik je geodriehoek.
    Maak alle hoeken recht!
  2. Teken de diagonalen AC en BD in het vierkant. Ga na dat ze even lang zijn en dat ze loodrecht op elkaar staan.

P, Q en R zijn hoekpunten van ruit PQRS.

  1. Teken ruit PQRS. *Gebruik de door jou geleerde eigenschappen van de ruit. Het is handig om eerst diagonaal PR te tekenen en daarna QS te tekenen.

 

 

10     Vlieger

 

Teken op je ruitjespapier een vlieger met diagonalen die allebei 4 cm lang zijn.

Je vlieger mag geen ruit worden! *je kunt natuurlijk even spieken in de samenvatting.

 

11   Goniometrische vormen

 

 

Op het werkblad staat dezelfde tekening nog een keer afgebeeld.

  1. Trek met blauw kleurpotlood een rechte hoek over (met geodriehoek).
  2. Trek een gebogen lijn over met groen kleurpotlood.
  3. Trek twee evenwijdige lijnen over met rood kleurpotlood (en geodriehoek).
  4. Kleur een vierkant geel.
  5. Kleur een cirkel oranje.
  6. Kleur een rechthoek paars.
  7. Kleur een driehoek groen.
  8. Kleur een trapezium grijs.

 

12   Assenstelsel.

 

Teken een assenstelsel met een x-as en een y-as van -5 tot 5. Vergeet de woordjes x-as en y-as niet aan het eind van de juiste as erbij te zetten. Teken daarna de punten P(1 , 1), Q(5 , 1) en
R(4 , 3) in je schrift.

  1. PQ en QR zijn twee zijden van een parrallellogram. Maak de parallellogram af.
  2. Zijn de overstaande zijden van de parallellogram evenwijdig?  Noteer het antwoord in je schrift.
  3. Zijn de overstaande zijden van de parallellogram even lang? Noteer het antwoord in je schrift.

 

Teken nu de punten A(-1 , -1), B(-4 , -2) en D(-2 , -4) in je schrift.

  1. AB en AD zijn de zijden van de ruit ABCD. Teken AB en AD.

  2. Teken de ruit.

  3. Teken met rood kleurpotlood de diagonalen in de ruit.

 

Uitwerkingen

Uitwerkingen volgen snel

Test jezelf

  • Het arrangement §3 Vlakke figuren 1 is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Auteur
    D. Giessen Je moet eerst inloggen om feedback aan de auteur te kunnen geven.
    Laatst gewijzigd
    2019-10-25 10:10:52
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten

    Gebruikte Wikiwijs Arrangementen

    Wiskundesectie Juliana. (2019).

    §4 Vlakke figuren

    https://maken.wikiwijs.nl/93996/_4_Vlakke_figuren

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.