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Prokaryotes have evolved several defence mechanisms to protect themselves

from viral predators. Clustered regularly interspaced short palindromic

repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic

adaptive immune system that memorizes previous infections by integrating

short sequences of invading genomes—termed spacers—into the CRISPR

locus. The spacers interspaced with repeats are expressed as small guide

CRISPR RNAs (crRNAs) that are employed by Cas proteins to target inva-

ders sequence-specifically upon a reoccurring infection. The ability of the

minimal CRISPR-Cas9 system to target DNA sequences using programma-

ble RNAs has opened new avenues in genome editing in a broad range of

cells and organisms with high potential in therapeutical applications.

While numerous scientific studies have shed light on the biochemical pro-

cesses behind CRISPR-Cas systems, several aspects of the immunity steps,

however, still lack sufficient understanding. This review summarizes

major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-

Cas in prokaryotic immunity and other physiological properties, and

describes applications of the system as a DNA editing technology and

antimicrobial agent.

This article is part of the themed issue ‘The new bacteriology’.
1. Introduction
Being the most abundant entities on our planet, bacterial and archaeal viruses

(bacteriophages or phages) display a constant threat to prokaryotic life. In order

to withstand phages, prokaryotes have evolved several defence strategies. In the

past decade, the prokaryotic immune system CRISPR-Cas (clustered regularly

interspaced short palindromic repeats-CRISPR-associated) caught increasing

attention in the scientific community not only because of its unique adaptive

nature, but also because of its therapeutic potential. This review seeks to sum-

marize the major discoveries made in the field of CRISPR-Cas, and describes

the biological roles of the system in antiviral defence and other biological

pathways as well as its significance for medical application.

CRISPR-Cas is the only adaptive immune system in prokaryotes known so

far. In this system, small guide RNAs (crRNAs) are employed for sequence-

specific interference with invading nucleic acids. CRISPR-Cas comprises a

genomic locus called CRISPR that harbours short repetitive elements (repeats)

separated by unique sequences (spacers), which can originate from mobile

genetic elements (MGEs) such as bacteriophages, transposons or plasmids.

The so-called CRISPR array is preceded by an AT-rich leader sequence and

is usually flanked by a set of cas genes encoding the Cas proteins [1–4].

To date, CRISPR-Cas systems can be divided into two main classes, which

are further classified into six types and several sub-types [5–7]. The classifi-

cation is based on the occurrence of effector Cas proteins that convey
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Figure 1. Simplified model of the immunity mechanisms of class 1 and class 2 CRISPR-Cas systems. The CRISPR-Cas systems are composed of a cas operon (blue
arrows) and a CRISPR array that comprises identical repeat sequences (black rectangles) that are interspersed by phage-derived spacers (coloured rectangles). Upon
phage infection, a sequence of the invading DNA ( protospacer) is incorporated into the CRISPR array by the Cas1 – Cas2 complex. The CRISPR array is then tran-
scribed into a long precursor CRISPR RNA ( pre-crRNA), which is further processed by Cas6 in type I and III systems ( processing in type I-C CRISPR-Cas systems by
Cas5d). In type II CRISPR-Cas systems, crRNA maturation requires tracrRNA, RNase III and Cas9, whereas in type V-A systems Cpf1 alone is sufficient for crRNA
maturation. In the interference state of type I systems, Cascade is guided by crRNA to bind the foreign DNA in a sequence-specific manner and subsequently
recruits Cas3 that degrades the displaced strand through its 30– 50 exonucleolytic activity. Type III-A and type III-B CRISPR-Cas systems employ Csm and Cmr
complexes, respectively, for cleavage of DNA (red triangles) and its transcripts (black triangles). A ribonucleoprotein complex consisting of Cas9 and a tracrRNA : crRNA
duplex targets and cleaves invading DNA in type II CRISPR-Cas systems. The crRNA-guided effector protein Cpf1 is responsible for target degradation in type V systems.
Red triangles represent the cleavage sites of the interference machinery.
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immunity by cleaving foreign nucleic acids. In class 1

CRISPR-Cas systems (types I, III and IV), the effector

module consists of a multi-protein complex whereas class 2

systems (types II, V and VI) use only one effector protein [5].
2. Molecular mechanisms: adaptation,
maturation and interference

The CRISPR-Cas system acts in a sequence-specific manner by

recognizing and cleaving foreign DNA or RNA. The defence

mechanism can be divided into three stages: (i) adaptation

or spacer acquisition, (ii) crRNA biogenesis, and (iii) target

interference (figure 1).

(a) Adaptation
In a first phase, a distinct sequence of the invading MGE called

a protospacer is incorporated into the CRISPR array yielding a

new spacer. This event enables the host organism to memorize

the intruder’s genetic material and displays the adaptive nature

of this immune system [1]. Two proteins, Cas1 and Cas2, seem
to be ubiquitously involved in the spacer acquisition process as

they can be found in almost all CRISPR-Cas types. Exceptions

are the type III-C, III-D and IV CRISPR-Cas systems, which

harbour no homologous proteins. Moreover, type V-C shows

a minimal composition as it comprises only a putative effector

protein termed C2C3 and a Cas1 homologue [5–7]. In past

years, major advances have been made in revealing the bio-

chemical and genetic principles of CRISPR-Cas immunity.

However, the mechanism of spacer acquisition is still not

fully understood [8,9]. The selection of protospacers and their

processing before integration remain widely obscure in many

CRISPR-Cas types. Recent findings, however, shed light on

the biochemistry of the spacer integration process. It has been

demonstrated that Cas1 and Cas2 of the type I-E system of

Escherichia coli form a complex that promotes the integration

of new spacers in a manner that is reminiscent of viral inte-

grases and transposases [10–13]. Although both Cas1 and

Cas2 are nucleases [14–16], the catalytically active site of

Cas2 is dispensable for spacer acquisition [10–12]. A new

spacer is usually incorporated at the leader-repeat boundary

of the CRISPR array [1] while the first repeat of the array is

duplicated [17,18].
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The mechanisms of the different CRISPR-Cas types might

be conserved only to a certain extent as several studies have

shown variations regarding the requirements and targets of

the adaptation machinery. While Cas1 and Cas2 are sufficient

to promote spacer acquisition in most studied type I CRISPR-

Cas systems, type I-B further requires Cas4 for adaptation

[19]. The type I-F CRISPR-Cas system of Pseudomonas aerugi-
nosa additionally requires the interference machinery to

promote the uptake of new spacers [20]. Similarly, type II-A

systems require Csn2, Cas9 and tracrRNA (trans activating

CRISPR RNA—see further details below) for acquisition

[1,21,22]. Another, so far unique, adaptation mode was

revealed for a type III-B Cas1 protein that is fused to a reverse

transcriptase. Here, acquisition from both DNA and RNA

was reported [23].

The selection of a target sequence that is integrated into

the CRISPR locus is not random. It has been demonstrated

that in type I, II and V CRISPR-Cas systems, a short sequence,

called the protospacer adjacent motif (PAM), is located directly

next to the protospacer and is crucial for acquisition and

interference [24–29]. In type II-A CRISPR-Cas systems, the

PAM-recognizing domain of Cas9 is responsible for protospacer

selection [21,22]. It is believed that after protospacer selection,

Cas9 recruits Cas1, Cas2 and possibly Csn2 for integration of

the new spacer into the CRISPR array. This feature may be con-

served among all class 2 CRISPR-Cas systems although

experimental evidence is missing. For type I-E, the Cas1–Cas2

complex is sufficient for spacer selection and integration

although it has been reported that the presence of the interfer-

ence complex increases the frequency of integrated spacers

that are adjacent to a proper PAM [24,25]. Moreover, in a process

called priming, the interference machinery of several type I

CRISPR-Cas systems can stimulate the increased uptake of

new spacers upon crRNA-guided binding to a protospacer

that was selected upon a first infection [19,25,30]. This process

displays a distinct adaptation mode compared to naive spacer

acquisition as it strictly requires a pre-existing spacer matching

the target. It usually leads to higher acquisition rates from pro-

tospacers that lie in close proximity to the target site [25].

Interestingly, primed spacer acquisition does not depend on

target cleavage as it also functions for degenerated target sites

that would usually result in impaired interference [31]. The

exact mechanism remains obscure but it has been demonstrated

that the interference complex can recruit Cas1 and Cas2 during

PAM-independent binding to DNA [32].
(b) Biogenesis
To enable immunity, the CRISPR array is transcribed into a

long precursor crRNA (pre-crRNA) that is further processed

into mature guide crRNAs containing the memorized

sequences of invaders [33,34]. In type I and III systems, mem-

bers of the Cas6 family perform the processing step yielding

intermediate species of crRNAs that are flanked by a short

50 tag. One exception is given by the type I-C systems, which

do not code for Cas6 proteins. Here, the protein Cas5d pro-

cesses pre-crRNA resulting in intermediate crRNAs with an

11 nt 50 tag [33,35–38]. Further trimming of the 30 end of the

intermediate crRNA by an unknown nuclease can occur and

yields mature crRNA species composed of a full spacer portion

(50 end) and a repeat-portion (30 end), which usually displays a

hairpin structure in most type I systems [39–41]. The matu-

ration of crRNAs in class 2 CRISPR-Cas systems differs
significantly. In type II systems, tracrRNA is required for the

processing of the pre-crRNA. The anti-repeat sequence of this

RNA enables the formation of an RNA duplex with each of

the repeats of the pre-crRNA, which is stabilized by Cas9.

The duplex is then recognized and processed by the host

RNase III yielding an intermediate form of crRNA that under-

goes further maturation by a still unknown mechanism to lead

to the mature small guide RNA [42]. An RNase III-independent

mechanism was discovered in the type II-C CRISPR-Cas

system of Neisseria meningitidis. Here, promoter sequences

were identified to lie within each repeat and some were able

to initiate transcription leading to intermediate crRNA species.

Even though RNase III-mediated 30 processing of the crRNA :

tracrRNA duplex was observed, it was dispensable for inter-

ference [43]. In the type V-A CRISPR-Cas system, it has been

shown that Cpf1 has a dual function during CRISPR-

Cas immunity. Cpf1 processes premature crRNAs [28] and,

following a further maturation event of unknown nature,

uses the processed crRNAs that it has generated to cleave

target DNA [28,29].

(c) Interference
In the last stage of immunity, mature crRNAs are used as guides

to specifically interfere with the invading nucleic acids. Class 1

systems employ Cascade (CRISPR-associated complex for anti-

viral defence)-like complexes to achieve target degradation,

while in class 2 systems, a single effector protein is sufficient

for target interference [29,39,44–49]. To avoid self-targeting,

type I, II and V systems specifically recognize the PAM

sequence that is located upstream (types I and V) or down-

stream (type II) of the protospacer [26,28,29,31,45,50–52]. In

type III systems, the discrimination between self and non-self

is achieved via the 50 tag of the mature crRNA, which must

not base pair with the target to enable degradation by the

complex [53].

In type I systems, Cascade localizes invading DNA in a

crRNA-dependent manner and further recruits the nuclease

Cas3 for target degradation. Cas3 induces a nick on the

foreign DNA and subsequently degrades the target DNA

[54,55]. In type II CRISPR-Cas systems, the tracrRNA:crRNA

duplex guides the effector protein Cas9 to introduce a

double-strand break in the target DNA [45]. The interference

machinery of type III systems comprises Cas10-Csm (types

III-A and III-D) and Cas10-Cmr (types III-B and III-C) com-

plexes [5], which are able to target both DNA and RNA

[38,39,47,49,56–63]. Intriguingly, it has been shown that

interference of type III-A and type III-B systems depends

on the transcription of the target DNA [57,58]. More pre-

cisely, the subunit Cas10 cleaves the DNA while Csm3

[59,60] and Cmr4 [61] cleave the transcribed mRNA in type

III-A and type III-B CRISPR-Cas systems, respectively. Inter-

ference in type V CRISPR-Cas systems shows similarities to

interference in type II. An RNA duplex, consisting of

tracrRNA and crRNA, is strictly required for target cleavage

in type V-B systems [7]. Type V-A, however, only employ

crRNA for target localization and degradation [28,29].
3. Anti-CRISPR mechanisms
Prokaryotes harbour a remarkable arsenal of defence strat-

egies in order to coexist with their viral predators (box 1).

As a part of the constant arms race between bacteria and



Box 1. CRISPR-Cas – What else? (Alternative defence mechanisms in bold type)

Apart from CRISPR-Cas systems, prokaryotes have evolved a comprehensive set of defence mechanisms to protect

themselves against predators. The viral infection cycle is initiated by adsorption of the phage onto the bacterial cell surface,

where the phages recognize host-specific receptors on the outer membranes or cell walls of the host. Bacteria can prevent

phage adsorption by producing an extracellular matrix that physically blocks the access to the specific receptor. Further

counter-strategies involve mutating phage receptors and production of competitive inhibitors that occupy the receptor

and thus lead to a reduced susceptibility to phage adsorption [64–66]. In the next step of infection, phages inject their genetic

material into the host. In order to block the entry of viral DNA, bacteria use the so-called superinfection exclusion (Sie)

systems that are often encoded by prophages. These systems comprise a set of proteins that prevent translocation of

phage DNA into the cytoplasm [67,68].

Once entered, viral DNA can be degraded by restriction-modification (RM) systems that use nucleases to recognize and

cleave short motifs present on the invading DNA. Non-methylated DNA is recognized by these restriction enzymes and self-

cleavage is prevented by methylation of target sites on the host genome [69,70]. Another defence strategy blocks phage

propagation by sacrificing an infected host cell, thus protecting the bacterial population. These abortive infection (Abi)

mechanisms use proteins that sense infections and consequently induce cell death through, e.g. membrane depolarization,

inhibiting the host’s translational apparatus or exploiting components of toxin-antitoxin systems [71–74]. Less

well-characterized antiviral systems encompass bacteriophage exclusion (BREX) and prokaryotic Argonautes. While

BREX inhibits viral replication and DNA integration of lysogenic phages [75], Argonaute proteins are DNA- or RNA-guided

nucleases that cleave invading DNA in a sequence-specific manner [76–78].
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their viral counterparts, phages have evolved different strat-

egies to overcome antiviral defence mechanisms. This

paragraph summarizes the research on how phages evade

the CRISPR-Cas systems.

Phages can escape the CRISPR-Cas interference machinery

through random mutations in the protospacer region or the

PAM sequence [26,51]. As a counter strategy, several type I

CRISPR-Cas systems show an elevated uptake of new spacers

as a direct result of mismatches in the PAM or in the targeted pro-

tospacer during primed acquisition (see §2). Moreover, the

efficiencyof escaping CRISPR-Cas immunity by point mutations

is strongly impaired in bacterial populations that show high

spacer diversity. A possible explanation for this observation is

that spacer diversity increases the adaptive pressure on the

virus and thus leads to rapid extinction of the predator [79].

Recent studies demonstrated that Mu-like phages, which

infect Pseudomonas aeruginosa, actively inhibit their host’s

CRISPR-Cas systems. These phages produce anti-CRISPR

(Acr) proteins that interact with components of the type I-F

CRISPR-Cas interference machinery: e.g. the phage proteins

AcrF1 and AcrF2 bind different subunits of Cascade and

thus prevent the binding of the Csy complex to the target

DNA. AcrF3 was shown to bind the nuclease Cas3, inhibiting

its function in target degradation. Similar proteins were

found to prevent type I-E CRISPR-Cas immunity in the

same organism, thus raising the question whether Acr

proteins exist for other CRISPR-Cas types [20,80–82].

In a so-far unique report of immune evasion, it has been

shown that Vibrio cholerae ICP1 phages encode a type I-F

CRISPR-Cas system that targets a host genomic island,

known to be involved in CRISPR-unrelated anti-phage

defence. Attacking the host’s defence mechanism was crucial

for phage propagation as the efficiency of infection was

greatly reduced when targeting spacers in the viral CRISPR

array were deleted. Intriguingly, analysis of phages that still

managed to successfully infect the host acquired new spacers

that originated from the same genomic locus, thus showing

that the virus harbours a fully functional CRISPR-Cas

system that is also active in acquisition [83].
4. Beyond adaptive immunity
Besides their role in prokaryotic immunity, CRISPR-Cas sys-

tems have been shown to participate in cellular pathways

other than immunity.
(a) DNA repair
Early reports suggested an involvement of the E. coli Cas1

protein in DNA repair pathways since the protein was

shown to interact with components of the cellular repair

machinery like RecB, RecC and RuvB. Cas1 further processed

intermediate DNA structures that often occur during DNA

repair and recombination like Holliday junctions, replication

forks and 50-flaps. Moreover, deletions of the cas1 gene

resulted in increased sensitivity towards DNA damage and

affected chromosome segregation [14]. Moreover, the partici-

pation of the RecBCD recombination system in CRISPR-Cas

immunity has become more evident in recent years. The

RecBCD complex recognizes double-strand DNA (dsDNA)

breaks that often occur at replication forks. After recognizing

damaged DNA, RecBCD subsequently degrades the DNA

until it reaches a Chi site [84]. A recent study suggested

that the degradation products of the repair complex serve

as templates for spacer acquisition as new spacers were

mainly acquired from regions that lie in close proximity of

stalled replication forks. With regard to antiviral immunity,

RecBCD might be the first line of defence as it recognizes

and degrades linear phage DNA and thus enables the adap-

tation machinery to collect new spacers. Acquisition from

chromosomal DNA is prevented due to the frequent distri-

bution of Chi sites within the host genome [85]. The

requirement of RecB for type I-E CRISPR-Cas immunity

was ultimately proven by another study demonstrating that

a recB deletion abolished naive spacer acquisition in E. coli.
Interestingly, the absence of RecB did not affect primed

spacer acquisition. Here, the helicases RecG and PriA were

essential, whereas DNA polymerase I was crucial for both,

naive and primed adaptation [86]. The emerged model
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suggests that, during primed adaptation, RecG and PriA

recognize the R-loop structure that occurs by binding of the

Cascade : crRNA complex to the DNA. As a result, Cascade

dissociates from the DNA leading to the exposure of tempor-

ary single-stranded DNA regions that may stimulate spacer

acquisition by Cas1 and Cas2. As Cas3 is essential for

primed adaptation, the nuclease activity of the protein is

likely to promote the generation of DNA fragments that are

captured by the acquisition machinery. During naive adap-

tation, DNA damage is possibly induced by Cas1 and leads

to the recruitment of the RecBCD complex as described

above [85,86].
 il.Trans.R.Soc.B
371:20150496
(b) Gene regulation
The involvement of CRISPR-Cas components in cellular

regulatory processes became more evident in the last few

years. Type II CRISPR-Cas systems seem to play a significant

role in regulating virulence of pathogenic bacteria. In Francisella
novicida, a ribonucleoprotein complex consisting of Cas9,

tracrRNA and a unique small CRISPR-associated RNA

represses the expression of a bacterial lipoprotein (BLP). Tran-

scriptional downregulation of BLP is crucial for immune

evasion as the protein can be recognized by the host’s

immune system. It is assumed that the ribonucleoprotein com-

plex binds the blp transcript leading to degradation of the

mRNA by Cas9 or an unknown nuclease. As a consequence,

BLP is underrepresented on the cell surface resulting in a

reduced immune response [87]. Similarly, Neisseria meningitidis
mutant strains that lack a cas9 gene showed severe survival

defects in human epithelial cells [87]. In Campylobacter jejuni,
cas9 deletion mutants displayed less cytotoxicity in human

cell lines. Presumably, the absence of C. jejuni Cas9 affects

the biochemical composition of the bacterial cell wall and

thus makes the cell more prone to antibody binding [88].

A type II-B Cas2 protein of Legionella pneumophila was crucial

for infection of amoebae and thus represents another viru-

lence-related function [89]. Transcription of an abandoned

CRISPR array (no cas operon) in Listeria monocytogenes leads

to the stabilization of a partially matching mRNA. Interest-

ingly, if the CRISPR array is removed from the genome, the

bacteria were able to colonize a murine liver more efficiently

providing evidence for a regulatory function in virulence by

an antisense RNA mechanism [90].

Endogenous regulation by CRISPR-Cas can also affect

group behaviour in a bacterial population as identified in

the life cycle of Myxococcus xanthus. The d-preoteobacterium

is able to produce myxospores to overcome environmental

stresses like nutrient deficiency. Myxospores are produced

during a complicated process that involves cooperated move-

ment and aggregation of cells within a population. As a

result, cell aggregates differentiate into the so-called fruiting

bodies that contain the spores. Myxococcus xanthus possesses

a type I-C CRISPR-Cas system and deletions of cas7 and cas5
lead to highly decreased sporulation. The same was true for a

cas8c deletion that additionally resulted in delayed cell aggre-

gation. Moreover, Cas8c stimulates synthesis of FruA, an

important protein in the sporulation pathway [91–93]. The

mechanistical involvement of Cas proteins in the formation

of the fruiting body remains puzzling as a recent study

added yet another level of complexity by demonstrating the

involvement of a type III-B CRISPR array in fruiting body

development and production of exopolysaccharides [94].
(c) Genome evolution
The acquisition of foreign DNA spacers is a crucial step in

CRISPR-Cas immunity and displays the unique adaptive

nature of this defence system. It has been widely reported that

in some cases, spacers are derived from own genomic sequences.

Targeting of the chromosome, however, results in DNA damage

and will inevitably kill the bacterial cell. While self-targeting

of CRISPR-Cas systems can definitely be lethal for a host

organism, several studies investigated its potential role in

genome evolution. Besides small-scale genetic modifications

like mutations in chromosomal PAM sequences, protospacers

or the cas operon, large genomic rearrangements were observed

in Pectobacterium atrosepticum when spacers matched sequences

in the own genome. Here, a genomic island of approximately

100 kb that is involved in plant pathogenicity was remodelled

or deleted [95]. A genomic study on Thermotogales revealed the

association of CRISPR loci to sites of DNA inversions and

other genetic rearrangements. Even though the exact involve-

ment of the CRISPR arrays in fostering the observed genetic

alterations remains unknown, CRISPR seems to promote these

evolutionary events [96]. By contrast, one bioinformatic study

suggested that self-targeting of CRISPR-Cas systems is a rather

undesirable effect, because it conveys autoimmunity. As an out-

come, CRISPR-Cas systems become degenerated due to

mutations in cas genes and the target sites or by the inactivation

or deletion of whole CRISPR-Cas systems which, indeed, pro-

motes evolutionary variations but simultaneously leads to a

loss of fitness regarding antiviral defence [97].
5. Significance and applications
The use of CRISPR-Cas in therapeutic approaches has become

increasingly relevant in different fields of medicine. The pres-

ence of repetitive sequences interspersed with short spacers,

later known as CRISPR, has been exploited for diagnostic pur-

poses and simple typing of Mycobacterium tuberculosis strains

[98]. This helped to understand ways used by pathogens for

their transmission by looking at differences in the spacer con-

tent of related strains [98,99]. This so-called spoligotyping

(spacer oligotyping) has also been adapted for Salmonella enter-
ica, Yersinia pestis and Corynebacterium diphteriae [100–105].

The use of CRISPR-Cas as a direct antimicrobial tool

has been studied recently. Artificial CRISPR arrays have been

designed to kill pathogenic bacteria by targeting antibiotic

resistance or virulence genes. This elegant way only aims

for harmful strains in a bacterial population and allows non-

pathogenic strains to overgrow the pathogens [106–108].

A recent study used lysogenic phages to introduce a CRISPR-

Cas system in E. coli, which targets antibiotic resistance

genes. The array was designed to additionally target the gen-

omes of lytic phages leading to immunity towards phages

only of antibiotic-sensitized bacteria. More precisely, bacteria

that are unlikely to acquire antibiotic resistance genes due to

their engineered spacer content are also resistant to lytic

phages. Thus, in the case of a phage infection, only pathogenic

strains would be eradicated from the population [109].

The medical potential of the CRISPR-Cas systems goes

beyond antimicrobial treatment. The introduction of efficient

and precise modifications into genes of an organism displays

the basis for genome engineering. Programmable nucleases

are used that specifically bind genomic regions and cleave

the DNA at a desired position. Zinc finger nucleases (ZFN)
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Figure 2. Applications of the CRISPR-Cas9 technology. (a) Cas9 is guided by a sgRNA to induce a double-strand DNA break at a desired genomic locus. The DNA
damage can be repaired by NHEJ yielding short random insertions or deletions at the target site. Alternatively, a DNA sequence that shows partial complementarity
to the target site can be inserted during HDR for precise genome editing purposes. (b) Mutations in the catalytical domains of Cas9 yield a dead variant (dCas9) that
binds but does not cleave DNA. The approach with dCas9 is used for transcriptional repression by binding to the promoter region of a gene and thus blocking the
access for the RNA polymerase. Similarly, dCas9 can be fused to a transcriptional repressor. Red crosses represent inhibition of transcription. (c) The fusion of dCas9 to
a transcriptional activator stimulates transcription of an adjacent gene by recruiting the RNA polymerase.
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and transcription activator-like effector nucleases (TALENs)

have been widely used to edit DNA. Both genome editing

tools rely on the same principle: a sequence-specific DNA

binding domain, which provides specificity, is fused to a

nuclease. Because of its simplicity, effectiveness and the

possibility to target multiple genomic sites simultaneously,

use of the CRISPR-Cas9 system is usually favoured over

ZFN and TALEN systems [110–112]. The bacterial defence

protein Cas9 is used to target almost any desired DNA

sequence with the help of a targeting RNA. This single-

guide RNA (sgRNA) is an engineered hybrid of the naturally

occurring tracrRNA:crRNA duplex and thus simplifies its

application for genome editing purposes [45].

Repurposing the CRISPR-Cas9 system for genome editing

exploits the DNA repair mechanisms of eukaryotic cells: after

the introduction of a double-strand DNA break, the cell can

repair the damage by non-homologous end joining (NHEJ).

This process is error-prone and often leads to point mutations,

deletions or causes frameshifts that alter the gene product and

eventually abolishes its function, which is favoured for genetic

knockouts. Precise genome engineering, however, relies on
another pathway, termed homology-directed repair (HDR),

where a piece of DNA that shows sequence homology to the

target site is used to repair the DNA via homologous recombi-

nation. This short DNA sequence can harbour any sort of

insertion or alteration, allowing the integration of any desirable

DNA sequence at the target site [50,113–117] (figure 2a).

Mutations in the nuclease motifs of Cas9 lead to a ‘dead’

variant that is unable to cleave DNA and thus can be used to

regulate transcription of a desired gene. By targeting the pro-

moter region or the open reading frame of a gene, binding of

the RNA polymerase is physically blocked and mRNA

elongation is inhibited. Alternatively, dCas9 can be fused to

a repressor that controls gene transcription (figure 2b). Tran-

scriptional activation can be achieved by fusing dCas9 to a

transcription activator that recruits the RNA polymerase

and induces gene expression (figure 2c). In some cases,

gene knock-downs are desired over gene knockouts, e.g. if

the targeted gene is essential [116,118–122]. The CRISPR-

Cas9 method has also been exploited for epigenome editing

that allows the control of gene expression by introducing modi-

fications like DNA methylation or histone acetylation. One



Box 2. Milestones in CRISPR-Cas research.

First described in 1987 as unusual repetitive sequences [139], the interest in CRISPRs and their associated genes slowly

increased throughout the 1990s and early 2000s. Initially believed to participate in cellular DNA repair and replicon parti-

tioning processes, first evidence that CRISPR-Cas systems display an adaptive prokaryotic immune system was delivered

in 2005 [4]. Researchers were surprised as they found that most of the interspersed sequences interspaced between identical

repeats derived from extra chromosomal DNA, more specifically from phage genomes and conjugative plasmids [4,100,140].

The hypothesis was eventually proven two years later when scientists showed the incorporation of new spacers into a

CRISPR-Cas locus of Streptococcus thermophilus after challenging the bacterium with a bacteriophage. The newly acquired

spacers always showed perfect complementarity to sequences on the phage genome and conveyed resistance towards that

particular phage upon a subsequent infection [1]. Research interest of the CRISPR field soon accelerated, leading to new dis-

coveries that helped to understand the basic mechanisms of the immune system. In 2008, the processing of the CRISPR

transcript into mature crRNAs that guide the Cascade complex of the E. coli type I-E system was experimentally validated,

also giving hints that DNA rather than RNA is targeted [54]. The latter was confirmed in the same year as a study demon-

strated that indeed DNA is the targeted molecule [56]. This led scientists to think about the potential role that this prokaryotic

immune system might play as a DNA manipulation tool. Today, CRISPR-Cas9 is a frequently harnessed tool for genome

editing purposes and major progress in understanding the underlying biochemical processes in RNA-guided Cas9 was pre-

sented in recent years. In 2010, researchers showed that Cas9 creates a single double-stranded break at a precise position on

the target DNA [63]. Further insight into the mechanism was delivered 1 year later as the involvement of another small RNA,

called tracrRNA, was shown. The maturation of crRNA requires tracrRNA as well as Cas9 and RNase III [42]. Evidence that

the system would function heterologously in other bacteria was demonstrated in 2011, as the S. thermophilus type II CRISPR-

Cas system could provide immunity in E. coli [141]. Other research had shown certain elements of the type II system,

including the involvement of a PAM sequence in interference [6,26,141] but the nature of the cleavage complex remained

unknown. In 2012, tracrRNA, which was previously known to be involved in crRNA maturation [42], was shown to also

form an essential part of the DNA cleavage complex, with the dual tracrRNA:crRNA directing Cas9 to introduce double-

strand breaks in the target DNA [45]. Further simplification of the programmed targeting was achieved by creating a

single-guide RNA fusion of tracrRNA and crRNA, that guides Cas9 for sequence-specific DNA cleavage [45]. A few

months following the description of the CRISPR-Cas9 technology [45], a number of publications demonstrated its power

to edit genomes in eukaryotic cells and organisms, including human and mouse cells [116,117].
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study showed that a fusion protein of dCas9 and the core

domain of the human acetyltransferase p300 could activate

gene expression at specific sites [123]. Moreover, fusion of

dCas9 to the KRAB repressor was able to induce methylation

at specific enhancers leading to reduced chromatin accessibility

and, thus, silencing of gene expression [124]. Precise epigen-

ome editing has great potential to reveal site-specific

chromatin modification and helps to explore the regulation of

gene expression that could lead to new therapeutical strategies.

Other approaches—mainly in prokaryotes—exploit the

endogenous type I effector complex Cascade for similar exper-

iments if the nuclease Cas3 is absent [125–127]. In all of the

aforementioned genome manipulation strategies, the existence

of a PAM adjacent to the target site is a strict requirement [9].

Precise remodelling of the genome can be used to cure

gene variants that cause genetic diseases. Scientists were

able to repair mutations that cause cystic fibrosis (CF) by cor-

recting the cftr locus in cultured intestinal stem cells of CF

patients [128]. Moreover, using the CRISPR-Cas9 technique,

a healthy phenotype could be restored in mice suffering

from hereditary tyrosinaemia, a genetic disease that causes

severe liver damage [129]. Genome editing has been further

used to develop antiviral therapeutic approaches. Accordingly,

the genome of HIV has been successfully eradicated from

latently infected cells [130]. Indeed, a recent study demon-

strated that the generation of NHEJ-induced mutations in the

viral genome led to replication defects of the virus. However,

it also drove the generation of replication competent mutants

that harbour mutations at the target site and thus are no

longer targeted by Cas9 [131]. Other studies aim to alter a

specific surface protein called CCR5 that serves as a co-receptor
for the HI-virus to enter a host cell. Mutations in the ccr5 gene

can prevent the virus from infecting a cell leading to a highly

resistant but otherwise healthy phenotype. In fact, altering

the wild-type ccr5 gene leads to immunity of monocytes and

macrophages against HIV infections [132–134].

The CRISPR-Cas9 technique has further simplified

genome-scale screens. These screens seek to identify genes

that are involved in certain metabolic or pathogenetic processes

by abolishing gene function and studying the resulting pheno-

type. Using this approach, genes that are involved in tumour

growth [135] or convey susceptibility towards bacterial toxins

[136] could be identified. Previously, RNA interference

(RNAi) was used to knock down gene expression in a

sequence-specific manner. However, RNAi only decreases the

abundance of transcripts, whereas CRISPR-Cas9 enables a

full knock-out of candidate genes. Moreover, multiplexing (tar-

geting of several genetic loci at the same time) is crucial for this

approach and can be achieved by using a library of different

sgRNAs that is usually delivered with Cas9 by a lentiviral

vector system [135–138].
6. Perspectives
Interest in the field of CRISPR-Cas has rapidly increased in

recent years. Numerous studies shed light onto the under-

lying genetic and biochemical processes of the adaptive

prokaryotic immune system thus revealing its potential in

modern medicine (box 2). Undoubtedly, the versatility of

different CRISPR-Cas systems is stunning and with the

recent discovery of three new types we may have just
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begun to fully understand the significance of CRISPR-Cas as

a microbial defence system. However, many aspects of the

antiviral system require further insight. The process of immu-

nization that is accomplished by incorporation of new spacers

in the CRISPR array is still the most puzzling event in

CRISPR-Cas immunity. The precise biochemical basis of

spacer acquisition and its degree of conservation among the

different types has yet to be uncovered. For instance, the func-

tion of additional proteins like Cas4 and Csn2 that have been

shown to be required for adaptation needs further investi-

gation. Primed adaptation has only been observed in type I

CRISPR-Cas systems even though this process provides a

great protective advantage towards mutated phages that

would escape CRISPR interference.

Another puzzling aspect is the impact of CRISPR-Cas sys-

tems on prokaryotic diversity. It has been observed that the

immune systems protect not only against phages, but also

against other MGEs that might have beneficial effects for an

organism. In fact, the native CRISPR-Cas system is silenced in

E. coli by the histone-like nucleoid structuring protein H-NS

[142], raising the idea that an inactive system may be advan-

tageous for the bacteria. In addition, CRISPR-Cas systems can

interfere with plasmid conjugation and transformation of natu-

rally competent bacteria [43,143]. Several studies show a

negative correlation between the occurrence of CRISPR-Cas sys-

tems and the amount of MGEs within the chromosome, which

seems like a limitation to evolutionary processes and horizontal

gene transfer (HGT) [144,145]. Contradictory results were pre-

sented by an evolutionary analysis that found no significant

correlation between the activity of a CRISPR-Cas system and

the number of HGT events [146]. However, these relations

have to be assessed in context with further factors like predatory

pressure, the occurrence of other defence systems and the fitness

costs that are connected to the maintenance of adaptive defence.

It has been stated that bacteria may lose or inactivate their

CRISPR-Cas systems when they face a high abundance of pre-

dators. In such environments, phage resistance due to, for

example, receptor mutations seems to be more affordable

[147]. More precisely, high viral mutation rates render adaptive

immunity obsolete as the costs of adapting to a dynamic

predatory habitat exceed the immunological benefits [148].

Interestingly, another study showed that simply maintaining

a CRISPR-Cas system without any predatory pressure can

result in an adverse balance regarding fitness costs. Here, a

wild-type strain showed reduced competitive capabilities com-

pared with a cas gene knockout mutant. In the case of phage

infection, however, no increased fitness costs were observed

as described above [149] and, thus demonstrating that these

dynamic phage–host interactions are highly complex and

need more elaboration in future scientific work.

Further research is also required on immunity-unrelated

functions of CRISPR-Cas systems. Numerous studies

revealed their involvement in several regulatory processes

(see §4) and deeper insight is needed, for instance, when it

comes to the interaction of Cas proteins with components

of cellular DNA repair and recombination pathways.
Besides their fascinating role in prokaryotes, CRISPR-Cas

systems undoubtedly caught most attention for their potential

in medical applications and numerous other biotechnological

applications like crop editing, gene drives (the ability to stimu-

late biased inheritance of particular genes to alter an entire

population) and synthetic biology (non-medical applications

are not discussed here; see [150] for details). Despite the enor-

mous potential that lies within the CRISPR-Cas9 technology,

further investigation is required to make the system an appli-

cable and safe tool for therapeutically useful approaches.

Challenging issues that remain and need to be addressed in

the future include off-target cleavage by Cas9. Off-target effects

are a major concern when precisely remodelling the genomic

content of eukaryotic cells. In some cases, genetic alterations

at off-target sites were detected at higher frequencies than the

desired mutation which clearly reveals the need for higher

specificity of the technique [151]. Strategies preventing off-

target effects include the injection of purified Cas9 directly

into a cell instead of expressing the recombinant protein in

the target cell. This method is convenient for fast target clea-

vage but also leads to the rapid decay of Cas9, thereby

reducing the possibility of off-target effects [152,153]. More-

over, using two sgRNAs that target both strands of the target

sequence in combination with a DNA-nicking variant of

Cas9 was shown to reduce off-target effects significantly

[154]. Further strategies focus on optimizing sgRNA sequences

in order to achieve more reliable editing. Truncating sgRNAs

by 2–3 nt was shown to improved target specificity [155].

Also, adding two guanine nucleotides at the 50 end, directly

next to the target-complementary region of the guide RNA,

could reduce off-target effects [156]. Another issue that requires

further investigation is the overall delivery of the CRISPR-Cas9

system into desired cells of a multicellular organism. Promising

in vivo approaches include viral and non-viral vector systems

that deliver Cas9 and sgRNA to the desired cells [110,157].

Moreover, ex vivo concepts rely on isolating patient-derived

cells which are transplanted back after genomic editing.

A major advantage in using this approach is the assessment

of the genetic alteration that was introduced. Here, only cor-

rectly edited cells without malign off-target mutations are

chosen for transplantation [110,157]. Although some chal-

lenges remain, it only seems to be a matter of time until

CRISPR-Cas9-based genome editing will become a safe and

applicable method used in a variety of therapeutic approaches.
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