Mensen scannen met MRI
Auteur: M.P. Huijbregtse, J.H. van der Schee, J.E. Frederik
Een van de grootste medische successen was de ontdekking dat men met behulp van röntgenstraling zicht op het menselijk skelet kon krijgen. Zonder de patiënt te opereren! Het lokaliseren van botbreuken werd zo een fluitje van een cent. Natuurlijk wilde men al snel ook andere delen van het lichaam kunnen bekijken, en zo ging de zoektocht naar nieuwe afbeeldingstechnieken voort.
'Magnetic Resonance Imaging' (MRI) is de naam van zo'n techniek. Met MRI kunnen afbeeldingen van diverse soorten weefsel - waaronder de hersenen - worden gemaakt om bijvoorbeeld tumoren op te sporen. Hoe gaat dat nu in zijn werk?
Om te beginnen moet je weten dat er ontzettend veel waterstofatomen in een lichaam zitten. Deze zijn opgebouwd uit één proton en één elektron. Elektronen hebben een eigenschap die we spin noemen en dat ze daardoor eigenlijk kleine magneetjes zijn. Protonen hebben deze eigenschap ook en daar maakt MRI graag gebruik van.
Eerst wordt er een sterk magnetisch veld rondom het te onderzoeken lichaamsdeel aangelegd (ca. 1 T, dat is 20.000x de sterkte van het aardmagnetisch veld). In dit veld gaan de protonen zich richten, net zoals een kompasnaaldje in een magnetisch veld. De tweede stap is het toevoeren van kortdurende elektromagnetische golven: 'pulsen'. Deze pulsen beïnvloeden de protonen en brengen ze als het ware uit evenwicht en het proton gaat in een andere positie staan.
Als een puls voorbij is, kan het proton weer terugkeren in zijn oude positie. Hierbij zendt het proton zelf echter ook een elektromagnetische puls uit. Deze pulsen worden gedetecteerd. Zo kan men zien hoe de waterstofatomen in het lichaam verdeeld zijn. Aangezien de waterstofdichtheid per weefselsoort verschilt, kan men nu achterhalen op welke plek welk weefsel zit!
Grappig: MRI werd eerst NMR genoemd, Nuclear Magnetic Resonance. Een proton is immers de kern ('nucleus') van een waterstofatoom. Mensen kregen echter zo'n spookbeeld bij het woord 'nuclear', dat er toch maar van deze naam is afgestapt!
Open de applet en maak de opdrachten die eronder staan.
In het hoofdvenster zie je een aantal trillende atoomkernen. Onder het venster staat het bedieningspaneel van de EM-golfgenerator. Hiermee kun je het vermogen ('Power') en de frequentie instellen. In de balk rechts naast het hoofdvenster staat een klein venstertje waarin twee lijnen te zien zijn. Op de bovenste lijn staan de atoomkernen die 'in trilling' zijn gebracht. Op de onderste lijn staan de kernen die geen energie van de EM-bron hebben meegekregen. Ook kun je in de rechterbalk het hoofdmagneetveld instellen. Zet de power op ongeveer 50%, de hoofdmagneet ('main magnet') op ongeveer 1 T en stel de frequentie zo in dat het golfje tussen de 2 lijnen in het kleine venstertje precies tussen die 2 lijnen past.
Beantwoord de volgende vragen.
Deel II: Tabblad 'Vereenvoudigd MRI'
Stel de MRI in met de waarden waarmee je met de NMR veel resonantie waarnam. Onderaan in de rechter balk kun je onder het kopje 'head' een tumor toevoegen. Doe dit.
De kunst is nu natuurlijk om zoveel mogelijk fotonen uit de tumor te laten komen en zo weinig mogelijk uit de rest van het hoofd. Zoals je ziet, is de concentratie van de gevoelige kernen het grootst in de tumor. Omdat ze dichter bij elkaar liggen, draaien ze iets moeilijker en hebben dus iets meer energie nodig en dus een hogere frequentie. Laat nu de frequentie voorzichtig toenemen totdat er bijna geen fotonen meer uit de kernen in het hoofd komen. Omdat de kernen ook slordiger liggen, reageren ze beter op een magneetveld dat een beetje scheef op de bewegingsrichting van de golven staat. Zet nu de horizontale 'gradient magnet' op vol en probeer het signaal van de tumor zo duidelijk mogelijk te krijgen. Vergelijk jouw resultaat met dat van andere leerlingen en schrijf op wat je opvalt aan de instellingen van deze scanner.
Schrijf de antwoorden in je schrift.
Laat alles door de docent of de PAL controleren.