7.1 Spherius

Misschien herinner je je Spherius nog uit de eerste les. Hij komt uit Spaceland en is een bol. Na de droom van A Square over Pointland en Lineland, de droom die hem heeft aangespoord om zich bezig te gaan houden met de vorm van Flatland, komt Spherius op bezoek om hem te vertellen over de derde dimensie.

A Square is ondersteboven van het inzicht dat Spherius hem geeft door hem te introduceren in Spaceland. Dit was nog voordat A Square de classificatiestelling ontdekte. Ineens begreep hij veel beter wat hij zich bij "de vorm" van Flatland kon voorstellen. Maar door zijn droom over Pointland en Lineland en het besef dat er een driedimensionale ruimte is waar hij nooit van had durven dromen, komt hij op het idee dat er misschien dan ook wel een vierdimensionale ruimte is. En waarom ook niet een vijfdimensionale, of zelfs zes...

A Square zag niet in waarom deze rij "kubussen" van oplopende dimensie (punt, lijn, vierkant, kubus,...) na dimensie drie zou stoppen.


Hij vroeg of Spherius hier iets vanaf wist. Spherius reageerde bot dat zoiets toch niet mogelijk kan zijn. Hij die zich vrij in drie dimensies beweegt weet toch wel beter! Hij had A Square weer achtergelaten in Flatland waar deze met hernieuwde moed verder ging met zijn classificatie van oppervlakken.

Na verloop van tijd zat het Spherius toch dwars dat hij zo bot had gereageerd en ook dat hij eigenlijk niet zeker was van zijn antwoord op de vraag van A Square. Misschien bestaat er wel een vierde dimensie. Aangezien hij A Square een aardig figuur vond, besloot hij de wiskundige Flatlander nogmaals op te zoeken.

Wat is dit?

Zoek met behulp van internet uit wat het volgende filmpje voorstelt en geef een uitleg.

Bron: http://www.youtube.com/watch?v=5xN4DxdiFrs
 
Hint: Google op tesseract of hypercube. Voor uitleg kun je dit filmpje bekijken.
 
A Square was blij verrast Spherius terug te zien. Hij viel Spherius helemaal niet meer lastig met vier- en vijfdimensionale werelden, hij was dolenthousiast over het bewijs van zijn classificatiestelling van oppervlakken. Spherius was toen hij Flatland verliet een stuk beter gehumeurd, waarom zou hij zich druk maken over de vierde en de vijfde dimensie; hij wist eigenlijk niet eens hoe zijn eigen drie dimensionale ruimte er precies uitzag! Hij besloot net als A Square bouwplaten te tekenen. In plaats van vierkanten met geïdentificeerde randen, tekende hij kubussen waarvan hij aangaf hoe de vlakken op elkaar geplakt moeten worden.
Al gauw kwam Spherius tot de conclusie, dat ook dit een zeer ingewikkeld vraagstuk was. Voor zijn eigen gemoedsrust besloot hij ook deze zaak te vergeten en A Square niet meer te bezoeken.

In deze les zullen ook wij een aantal driedimensionale ruimten bestuderen en daarmee ook een idee krijgen van de mogelijkheden voor de vorm van ons eigen universum.