Het bewijs van de classificatiestelling laat in stappen zien dat we het woord dat bij de bouwplaat hoort kunnen reduceren tot een standaardvorm, waar “P2-delen”, bijvoorbeeld aa, afgewisseld worden met “T2-delen” van de vorm aba-1b-1. Daarmee wordt aangetoond dat het oppervlak homeomorf is aan de samenhangende som van P2’s en T2’s. Als er een P2 in voorkomt kunnen we T2 vervangen door P2 # P2 dankzij de gelijkheid P2 # T2 = P2# P2 # P2. Als er geen P2-stukken voorkomen hebben we de samenhangende som van tori met een identificatieschema met alleen maar stukken van de vorm aba-1b-1 achter elkaar. De laatste mogelijkheid is dat deze ook niet voorkomen. Het woord is dan “leeg”, wat betekent dat het oppervlak homeomorf is met S2.
Bewijs:
Stap 1: Verwijder alle stukken van de vorm aa-1 uit het woord.
Stap 2: Ga over op een bouwplaat waarvan alle hoekpunten met elkaar zijn geïdentificeerd. Dit kan als volgt: Stel dat de hoekpunten van het veelhoek zijn geïdentificeerd zijn in twee groepen, groen (G) en paars (P). Ergens moeten er een groen en een paars punt naast elkaar liggen. Vervolgens kunnen we de volgende bewerking uitvoeren om een paars punt voor een groen punt in te ruilen:
Ga door totdat alle punten groen zijn. Verwijder alle aa-1 stukken (dit kan nodig zijn om de laatste paarse punten weg te halen).
Stap 3: Voeg alle P2-achtige stukken samen. Dat wil zeggen, als er een letter twee keer met dezelfde oriëntatie voorkomt (als ...a...a... of als ...a-1...a-1...) kunnen we met knippen en plakken een P2-stuk in elkaar zetten:
De letters X en Y staan voor een willekeurig aantal randen met letters. Bijvoorbeeld X = bdb, Y = d.
Met deze plaatjes leiden we de regel aXaY = ccXY-1 af. We kunnen de c's nu eventueel weer veranderen in a's, aangezien dit slechts aangeeft dat deze randen op elkaar geplakt worden. Dan vinden we de regel; aXaY =aaXY-1. Pas deze regel zovaak mogelijk toe, totdat alle “aa-paren” zijn samengevoegd. Herhaal stap 1 als nodig.
Stap 4: Als laatste voegen we de T2-achtige stukken samen. Zoek naar zijden die voorkomen in de volgorde a ... b ... a-1 ... b-1 ... .
Deze stap heeft twee keer knippen nodig. We knippen langs c en plakken langs b. Vervolgens knippen we langsd en plakken langs a1. Het nieuwe veelhoek heeft geen zijdes met a en b meer, maar wel een sequentie cdc-1c-1zoals de torus.
Als we klaar zijn met deze stap hebben we een identificatieschema met alleen maar P2-stukken en T2-stukken gekregen. We hebben immers alle aa-paren samengevoegd, net als zijden van de vorm aba-1b-1. Het enige dat nog zou kunnen gebeuren is dat een a-a-1 paar slechts is gescheiden door paren van letters, bijvoorbeeld als inabba-1cc. Maar dan zijn niet alle hoekpunten geïdentificeerd, dus deze situatie is uitgesloten door stap 2.
Als de zijden a en a-1 alleen door identificatieparen worden gescheiden zijn niet alle hoekpunten geïdentificeerd.
Hier volgt nog eens een tabel met, per stap, de regel die is afgeleid in symbolen weergegeven.
Stap 1. |
aa-1XY |
= |
XY |
Stap 2. |
aXba-1Y |
= |
cbXc-1Y |
Stap 3. |
aXaY |
= |
ccXY-1 |
Stap 4. |
aXbYa-1Zb-1W |
= |
cdc-1d-1XYZW |