4.1 - Een heelal vol sterrenstelsels
Samenvatting
Het heelal is onvoorstelbaar groot, met daarin meer dan een miljard sterrenstelsels. Eén van die sterrenstelsels is het Melkwegstelsel, waarvan ons zonnestelsel een klein onderdeel is. Een ster straalt energie uit in de vorm van elektromagnetische straling. De intensiteit van de uitgezonden straling hangt af van de golflengte. De golflengte waarbij de intensiteit van de uitgezonden straling maximaal is, wordt bepaald door de oppervlaktetemperatuur van de ster. Hoe hoger deze oppervlaktetemperatuur T is, des te kleiner is de golflengte λmax van de piek in het stralingsspectrum (wet van Wien):
λmax = kW/T
Voor afstandsbepalingen in het heelal bestaan verschillende methoden. Voor sterren op relatief kleine afstand is de parallaxmethode bruikbaar. Voor sterren die verder weg staan volgt de oppervlaktetemperatuur met de wet van Wien uit het stralingsspectrum. Uit het Hertzsprung-Russelldiagram is dan de lichtsterkte af te lezen. Vergelijking van de lichtsterkte met de op aarde waargenomen stralingsintensiteit levert ten slotte de afstand. Voor sterrenstelsels op zeer grote afstand gebruikt men de Cepheïdenmethode. Van deze veranderlijke sterren is de lichtsterkte te bepalen door meting van de periode waarmee hun lichtsterkte varieert. Vergelijking van deze lichtsterkte met de op aarde waargenomen stralingsintensiteit levert dan weer de afstand.
Lees eerst de lesstof. Maak daarna de vragen op deze pagina.
Een heelal vol sterrenstelsels
Hoe ziet het heelal er buiten het zonnestelsel uit?
In de figuur zie je het stralingsspectrum van sterren: de intensiteit als functie van de golflengte van de uitgezonden straling. Hoe het stralingsspectrum van een ster eruit ziet, hangt voornamelijk af van de temperatuur. Hoe hoger de temperatuur is, des te kleiner is de golflengte waarbij de intensiteit in het stralingsspectrum maximaal is.
Zelfs met het blote oog is te zien dat sterren aan de hemel verschillende kleuren hebben: sommigen zijn blauwachtig, anderen zijn meer rood van kleur. Dat is te verklaren met het stralingsspectrum van sterren in de bovenstaande figuur. Koele sterren hebben een oppervlaktetemperatuur van 4000 K of minder. In de bovenstaande figuur is te zien dat de piek van het spectrum bij een temperatuur van 4000 K bij een golflengte van ongeveer 800 nm ligt: de golflengte van rood licht. Koele sterren zijn daardoor roodachtig van kleur. Duidelijk is te zien dat de kleuren van sterren verschillen. De allerheetste sterren hebben een blauwachtige glans.
De wet van Wien is in 1893 opgesteld door de Duitse natuurkundige Wilhelm Wien. De wet van Wien zegt, dat deze golflengte λmax omgekeerd evenredig is met de absolute temperatuur T in kelvin (K). Dat betekent bijvoorbeeld: als de temperatuur tweemaal zo hoog is, is de golflengte van de piek in het stralingsspectrum tweemaal zo klein.
OrionBekijk Orion met het vergrootglas en zoek de vier genoemde sterren op de webpagina:http://nl.wikipedia.org/wiki/Orion_(sterrenbeeld) .
Maak een schetsje in je schrift en zet daar de namen bij.
Webopgave 116 en 117 - Meerkeuzevragen
Nu je de namen van de vier sterren die we gaan meten kent, kun je naar de volgende opdracht.
Webopgave 118 - Meting
Je kunt de ster van je keuze selecteren met je muis en een spectrum laten tekenen met het 'voorwaarts' pijltje in het 'control' schermpje. Als een spectrum klaar is kun je met het schuifbalkje naar elke plek op de grafiek gaan en aflezen om welke golflengte en intensiteit het gaat.
De intensiteit van de straling wordt telkens in een klein stukje van het golflengtegebied gemeten, dus langs de verticale as van der grafiek vinden we de eenheid: W/m2 per Δλ.
Kies nu een ster en teken het spectrum. Beantwoord daarna de vragen van webopgave 118. Noteer je uitwerking in je schrift of in je Word document .
Omdat we naar de opgevangen straling kijken kunnen we alleen de verschuivingswet van Wien toepassen om de oppervlaktetemperatuur van een ster te bepalen. Daarvoor hebben we de golflengte nodig waarop de meeste energie wordt uitgezonden.
Webopgave 119 - Rekenen met de wet van Wien
Webopgave 120 - Keuzeopdracht zonnespectrum
Je gaat zelf een grafiek maken van het spectrum van de Zon, op basis van meetgegevens van D. Silva van de Universiteit van Oregon. Je kunt hier een excelbestand downloaden met gegevens van de intensiteit van het zonlicht voor een grote hoeveelheid golflengten.
Je ziet in het excelbestand een tabel met drie kolommen:
De (verticale) kolommen van de tabel zijn aangegeven door de letters A, B, C, ...; de (horizontale) rijen zijn genummerd.
Opdracht:
Als je de tabel doorloopt zul je zien dat er 801 metingen zijn, om de halve nanometer, beginnend bij 360 nm. Zo’n tabel geeft geen duidelijk beeld van het spectrum van de Zon; daarom ga je er nu een grafiek van maken. Om een nette grafiek te maken in Excel, klik op de button met "klik hier".
Je grafiek toont een zgn. continu spectrum, d.w.z. een spectrum, dat een breed golflengtegebied beslaat. Voor zo’n spectrum bestaat er een verband tussen de golflengte λmax waarbij de intensiteit maximaal is en de temperatuur T van de bron. Dat verband heet de wet van Wien.
De Zon straalt dus licht uit waarvan de maximale intensiteit ligt in het
zichtbare gebied van het elektromagnetisch spectrum. En de Aarde?
4.1 - De afstand van sterren
Een blik op de sterrenhemel maakt duidelijk dat sterren verschillen in helderheid. Die verschillen in helderheid worden veroorzaakt door verschillen in grootte, oppervlaktetemperatuur en afstand.
Hoe groter de afmeting en hoe hoger de oppervlaktetemperatuur van een ster zijn, des te groter is het uitgezonden stralingsvermogen. Dit stralingsvermogen noemen we de lichtsterkte (L) van een ster. Op aarde kunnen we de stralingsintensiteit (I) van een ster meten: het waargenomen stralingsvermogen per vierkante meter. Als we ook de afstand (r) tot de ster weten, is de lichtsterkte van een ster te berekenen met de gemeten stralingsintensiteit en de afstand. Voor relatief dichtbij geleden sterren is de afstand te bepalen uit de parallax van deze sterren over een periode van zes maanden. Hoe kleiner deze beweging is, des te verder weg staat de ster.
In het begin van de vorige eeuw combineerden E. Hertzsprung en H.N. Russell de kennis over alle sterren waarvan de stralingsintensiteit en de afstand – en dus de lichtsterkte – bekend was in het diagram (zie hiernaast). Dit is het Hertzsprung-Russell diagram. Langs de verticale as staat de lichtsterkte, langs de horizontale as de oppervlaktetemperatuur van de sterren. Uit dit diagram blijkt dat de meeste sterren (waaronder de zon) zich op de zogenaamde hoofdreeks bevinden: de strook van rechtsonder naar linksboven. Een kleiner aantal sterren wijkt van die regelmaat af: de reuzen, de superreuzen en de witte dwergen.
Langs de verticale as staat de lichtsterkte L, uitgedrukt in de bekende lichtsterkte van de zon (Lzon). Langs de horizontale as staat de oppervlaktetemperatuur T van een ster. Beide schaalverdelingen zijn niet lineair. Dat maakt het aflezen van waarden in het diagram wat lastig. Bovendien is de schaalverdeling langs de horizontale as wat ongebruikelijk: langs de as neemt de temperatuur van links naar rechts af.
In het volgende diagram kun je de levensloop van een ster zoals onze zon volgen in het HR diagram: van geboorte in een wolk van waterstofgas en andere stoffen tot zijn dood als zwarte dwerg.
Webopgave 121
Hoe lang duurt deze reis van geboorte tot dood van een ster? Zie: http://nl.wikipedia.org/wiki/Zon
Bij welke temperatuur is een ster het helderst?
Wat gebeurt er met de ster na de variabele fase?
Webopgave 122 - Invuloefening
Parallaxmethode
Voor sterren die ver weg liggen is een afstandsbepaling met de parallaxmethode niet mogelijk: de parallax is zo klein dat die niet is waar te nemen. Maar in dat geval is die afstand met het Hertzsprung-Russell diagram te bepalen. Uit het waargenomen sterspectrum volgt met de wet van Wien de oppervlaktetemperatuur. Uit het Hertzsprung-Russell diagram is dan de lichtsterkte L van die ster af te lezen. De aanname daarbij is dat de ster op de hoofdreeks ligt. Astronomen kunnen uit de eigenschappen van het sterspectrum opmaken of dat het geval is. Uit de zo bepaalde lichtsterkte L en de op aarde waargenomen stralingsintensiteit I van de ster is dan de afstand r te berekenen.Want: als het – zoals eerder gezegd – mogelijk is om uit I en r de lichtsterkte L te berekenen, dan is het ook mogelijk om uit L en I de afstand r te berekenen. Op deze manier kunnen we dus een beeld krijgen van de lichtsterkte, de oppervlaktetemperatuur en de afstand van de sterren die we aan de hemel zien. Astronomen kunnen daaruit bovendien de grootte en de massa van sterren afleiden.
Webopgave 123
Gegeven een hoofdreeks-ster met λmax bij 580nm. De waargenomen stralingsintensiteit is 400 keer kleiner dan die van de zon. Als de afstand van een ster twee keer zo groot wordt, wordt de intensiteit van de straling vier keer zo klein.
Wat is zijn lichtsterkte?
Hoe ver staat de ster van ons af?
Webopgave 124 - Extra: Exoplaneten
De zon heeft een stelsel van planeten om zich heen. Men heeft zich lang afgevraagd of de zon de enige ster is met zo’n planetenstelsel. De zoektocht naar planeten bij andere sterren heeft inmiddels zo’n 300 zogenaamde exoplaneten opgeleverd. Aanwijzingen voor de aanwezigheid van een exoplaneet bij een ster zijn heel kleine variaties in de snelheid en lichtsterkte van die ster. De snelheidsvariaties zijn alleen goed te meten bij zware exoplaneten die met grote snelheid in een kleine baan rondom de ster draaien. En om de lichtsterktevariaties te kunnen meten, moeten we vanaf de aarde tegen de zijkant van het stelsel aankijken, zodat de exoplaneet voor de ster langs beweegt.
In 2008 zijn de eerste exoplaneten ook echt op telescoopbeelden te zien: de ster HR8799 met zijn planetenstelsel. De ster staat op een afstand van 128 ly. Op de foto zijn twee van de drie reuzenplaneten te zien, met omlooptijden van 100, 190 en 460 jaar. Bij het maken van de foto is het licht van de ster zelf afgeschermd, omdat de planeten anders niet zichtbaar zouden zijn. (bron: Malmberg)
Opdracht:
Beschrijf in eigen woorden ten minste 3 methoden om een exoplaneet te ontdekken.
Meer weten? Je kunt deze site als bron gebruiken : website wikipedia over exoplaneten
4.1 - Ons Melkwegstelsel
Lees eerst de lesstof van hoofdstuk 4 paragraaf 4.1 Maak daarna de vragen op deze pagina.
De zon, met al haar planeten en bijbehorende manen, maakt deel uit van het Melkwegstelsel. We zien de melkweg als een lichte band over de hemel. Het is voor astronomen niet gemakkelijk geweest om zich een beeld te vormen van de structuur van het Melkwegstelsel, want wij zitten er middenin.
Het Melkwegselsel bestaat uit zo’n 200 tot 400 miljard sterren in een discusvormige schijf (zie figuur). Het Melkwegstelsel wordt bijeen gehouden door de gravitatiekracht en roteert om zijn middelpunt. Met de gravitatiewet van Newton heeft men berekend, dat de massa in het centrum van het Melkwegstelsel ongeveer 100 miljard zonsmassa’s bedraagt. De totale massa van het Melkwegstelsel is nog veel groter.
Webopgave 125 - Newton
Hoe kun je met de gravitatiewet berekenen hoe groot de massa in het centrum is? Schrijf de stappen één voor één op. (Tip: denk aan de middelpuntzoekende kracht op een ster Fmpz=mv2/r die geleverd wordt door de Fg=G. m.M/r2)
Een impressie van de vorm van ons Melkwegstelsel zie je in dit videofragment.
Webopgave 126 - Meerkeuzevraag
4.1 - Sterrenstelsels
Ons melkwegstelsel lijkt erg op een van onze 'buren' in het heelal: de Andromedanevel. De Amerikaanse astronoom Edwin Hubble was in staat om de afstand tot de Andromedanevel te bepalen. Hij vond een afstand die veel groter was dan de afmetingen van ons Melkwegstelsel. In latere metingen is vastgesteld dat de Andromedanevel zelf een sterrenstelsel is, met een structuur en afmetingen die sterk op ons eigen Melkwegstelsel lijken. De Andromedanevel staat op 2,2 miljoen lichtjaar van de aarde, bevat 200 miljard sterren en is voor ons het dichtstbijzijnde sterrenstelsel in het heelal.
Webopgave 127 - Hubble
Een satelliet zoals de Hubble bestaat uit heel veel verschillende onderdelen. Om je te laten zien dat we in de natuurkunde allerlei onderwerpen combineren maak je deze opgave waarin de optica een grote rol speelt. Een satelliet 'kijkt' toch op een wat andere manier naar de verre ruimte. Voor de telescoop is het niet zo handig een grote dikke lens te gebruiken. Het grote gewicht en de afwijkingen van de beeldvorming zijn behoorlijk bezwaarlijk. De oplossing ligt in het gebruik van holle spiegels, die kunnen het licht ook bundelen en zo een beeld vormen in de opname apparatuur.
Hier zie je een animatie van de Space Telescope Hubble.
Ga naar 'model' en vereenvoudig het plaatje totdat je de spiegels kunt zien. Beschrijf kort, met een tekening, hoe het licht van de ver weg gelegen sterrenstelsels op de camera van de Hubble terecht komt.
Meer weten?
http://nl.wikipedia.org/wiki/Ruimtetelescoop_Hubble
Afstanden van sterrenstelsels
Het op een betrouwbare manier bepalen van de afstanden van sterrenstelsels in het heelal is een probleem. De parallax van sterrenstelsels is zo klein, dat deze niet is waar te nemen. Daarom gebruikt men de waargenomen stralingsintensiteit van een speciaal soort sterren: de Cepheïden. Dit zijn veranderlijke sterren die genoemd zijn naar hun prototype: de ster Delta Cephei. Uit de lichtsterkte L en de op aarde gemeten stralingsintensiteit I de afstand r van de Cepheïde te berekenen. Deze methode werd door Hubble gebruikt om de afstand tot de Andromedanevel te bepalen. (zie ook: http://nl.wikipedia.org/ )
Webopgave 128 - Afstandbepaling met Cepheïde
Hoe kon Hubble de geweldig grote afstand tot de andromedanevel meten? Beschrijf kort zijn methode.
( zie ook http://nl.wikipedia.org/wiki/Cephe%C3%AFde)
Webopgave 129 - Stellingen.