2.4 Werkt de formule wel?

Kennelijk moeten we een extra eis stellen aan de sleutel om te zorgen dat alle letters verschillend vercijferd worden. We gaan nu onderzoeken welke eis dat moet zijn. 
Wat we willen is dat, als we voor x in het voorschrift E(a,b)(x)=rest((ax+b):26) de gehele getallen van 0 tot en met 25 invullen en we bepalen de rest bij deling door 26, dat dan alle getallen van 0 tot en met 25 precies één keer voorkomen.

Voorbeeld:
We nemen weer a=4 en b=3. Als we achtereenvolgens 0, 1, 2, 3, ... invullen, komt er 3, 7, 11, 15, ... uit. Dit zijn allemaal viervouden plus 3, dus allemaal oneven. De resten bij deling door 26 zijn dan allemaal ook oneven, waaruit we al kunnen concluderen dat de even getallen niet als resultaat voorkomen.
Als je de rij van resten bekijkt, dan zie je de zichzelf herhalende rij 3, 7, 11, 15, 19, 23, 1, 5, 9, 13, 17, 21, 25, 3, 7, 11, ... . Dit zijn de viervouden plus 3 en de viervouden plus 1 kleiner dan 26.

De bedoeling van de volgende opgave is om na te gaan aan welke eisen de waarden van en bmoeten voldoen opdat (a,b) een bruikbare sleutel is in een affien cryptosysteem.

Opgave 9

a) Leg uit dat het geen zin heeft om een andere waarde voor b te nemen als het cijferalfabet een zichzelf herhalende rij blijkt te zijn zoals in het voorbeeld hierboven.
Neem in de rest van de opgave daarom b steeds 0
Gebruik daarbij de tabel voor affiene versleuteling.

Affiene versleuteling

b) Kies a=2. Onderzoek of je alle getallen van 0 t/m 25 als uitkomst krijgt.
c) Kies a=3. Onderzoek of je alle getallen van 0 t/m 25 als uitkomst krijgt.
d) Kies a=13. Onderzoek of je alle getallen van 0 t/m 25 als uitkomst krijgt.
e) Onderzoek voor welke waarden van a in het gebied [0,25] je wel precies alle getallen van 0 t/m 25 als uitkomst krijgt.
f) Laat door uit te schrijven zien dat vercijfering met het affiene systeem met sleutel (a,b) hetzelfde oplevert als met sleutel (a+26,b).

Opgave 10

We hebben gezien dat er 26 sleutels zijn bij een schuifcryptosysteem over een alfabet met 26 letters.
a) Hoeveel daarvan leveren een vercijfering die niet identiek aan de klare tekst is?
b) Onderzoek hoeveel sleutels, dus paren, er zijn bij een affien cryptosysteem over een alfabet met 26 letters waarmee verschillende zinvolle vercijferingen te maken zijn.

Wanneer we weten hoe 2 letters vercijferd worden, kunnen we het paar achterhalen door deze gegevens in de encryptiefunctie in te vullen. We kunnen de sleutel dus kraken zonder alle sleutels te proberen. In de volgende opgave gaan we dit doen voor het paar waarbij we weten dat een dvercijferd wordt tot een Q en een n tot een O.

Opgave 11 

a) Leg uit: uit het gegeven dat een d wordt vercijferd tot een Q, dus dat E(a,b)(3)=16, volgt dat er een geheel getal is dat voldoet aan 3a+b=16+26p.
b) Welke conclusie kun je trekken uit het gegeven dat een n wordt vercijferd tot een O, dus dat 
E(a,b)(13)=14?
c) Leg uit dat je het sleutelpaar (a,b) gevonden hebt, als je het volgende stelsel vergelijkingen hebt opgelost:

3a+b=16+26p
13a+b=14+26q

d) Vind het sleutelpaar door het stelsel vergelijkingen op te lossen.

Het lastige in de berekening om een heel getal voor a en b te vinden is om voor p en q geschikte waarden te kiezen. Ook hiervoor kan Excel ons een goede dienst bewijzen, zie de bijgaande kraaktabel en de toelichting in dit filmpje.
 

Klik hier voor film.

 De tabel geeft ons 2 verschillende mogelijke combinaties waarvan er slechts één een goede oplossing is.

Kraaktabel

e) Waarom kan (a, b)=(18,14) geen geschikte oplossing zijn? 
Tip: Kijk nog even terug naar opgave 10 of gebruik de affiene tabel.

Opgave 12 

a) Oscar heeft bij een met affiene cryptografie vercijferde tekst afgeluisterd hoe twee letters vercijferd worden: de c blijkt als F vercijferd te worden en de f als E. Achterhaal de sleutel (a, b) waarmee de tekst vercijferd is.
b) Doe hetzelfde als blijkt dat de d een N en de h een J wordt.

Meerkeuzevraag