Steenkool

In een moerassige omgeving raakt fossiel plantaardig materiaal afgeschermd van lucht, waardoor geen rotting op kan treden. Onder dergelijke omstandigheden ontstaat veen. Turf, een brandstof die in Nederland nog in de eerste helft van de 20e eeuw werd gebruikt, is gedroogd veen.


 

Turfstekers in De Peel
 
Door afzettingen van zand- en leemlagen raakte het veen steeds dieper onder de grond. Met toenemende blootstelling aan hoge druk en temperatuur vindt een omzetting plaats van veen via bruinkool naar steenkool en anthraciet. De kleur van het materiaal wordt tijdens de transformatie donkerder, het koolstofgehalte neemt toe. Anthraciet is een steenkoolsoort die uit vrijwel zuivere koolstof bestaat. Uiteindelijk ontstaat zuivere koolstof, grafiet.
 

Samenstelling steenkool

Steenkool bestaat uit grote macromoleculen. De gemiddelde steenkool heeft als samenstelling: CH0,8O0,05. Deze formule geeft aan dat per 100 C-atomen in steenkool 80 H-atomen en 5 O-atomen aanwezig zijn. In aardolie is de verhouding C : H ongeveer 100 : 170, in aardgas 100 : 400.
 

Nadelen gebruik steenkool

Steenkool kunnen we, chemisch gezien voor verbrandingsreacties, ruwweg opvatten als koolwaterstoffen. Het bezwaar is, dat het vast is en niet vloeibaar te maken door smelten. Daardoor is het lastig te verbranden. En het moet diep onder de grond worden gedolven: een vuil, onaangenaam en gevaarlijk karwei. Steenkool bevat ook wat zwavel- en stikstofverbindingen, naast een aantal andere verontreinigingen. Deze zijn van belang voor de milieu-aspecten van het gebruik van steenkool. Bij verbranding ontstaat bijvoorbeeld vrij veel zwaveldioxide (zie 'Aardgas' in deze paragraaf). Bovendien bevat steenkool altijd onbrandbare bestanddelen, voornamelijk klei en zand, die tijdens de vorming tussen de plantenresten zijn geraakt. Na verbranding blijven deze onbrandbare delen achter als as.

 

Cokes

Als we steenkool afgesloten van de lucht verhitten, ontwijken de vluchtige bestanddelen en treedt thermolyse van de macromoleculen op. Er blijft koolstof over, die we cokes noemen. De installatie heet een cokesoven.

Vóór de ontdekking van het aardgas in Groningen stonden in veel plaatsen in Nederland gasfabrieken. Daar werd 'gas' gemaakt voor huishoudelijk gebruik (een mengsel van CO en H2). Grondstof voor deze productie was cokes. Door hoog verhitte cokes werd hete stoom geleid. De volgende chemische reactie vindt dan plaats:

C(s) + H2O(g)  → CO(g) + H2(g)

 

Steenkolenvergassing

De steenkoolvoorraden in de wereld zijn erg groot; er is genoeg voor honderden jaren. Gewoon verbranden in kachels en ovens veroorzaakt echter (te) ernstige luchtverontreiniging. Daarom zoekt men naar andere manieren om deze brandstofvoorraden te gebruiken. Eén manier is steenkolenvergassing. In principe komt dit proces neer op de zojuist genoemde reactie met hete stoom in de gasfabriek. Bovengronds worden gedolven en fijngemaakte kolen vaak al zo behandeld, maar in principe kan steenkool ook ondergronds al op deze manier worden vergast.

De reactie van stoom met koolstof, of met koolstofverbindingen, wordt in de industrie algemeen op grote schaal gebruikt voor de bereiding van 'synthesegas' of 'syngas'.