Download docentenhandleiding van dit practicum als pdf
In dit computerpracticum kunnen leerlingen kennismaken met het verval van deeltjes. Dit verval wordt gesimuleerd door het veranderen van de kleur van deeltjes. De gebruikte simulatie (Verval) is geschreven in NetLogo. Meer informatie hierover staat in de docentenhandleiding. Met deze simulatie kunnen leerlingen visueel kennismaken met het verval van deeltjes, de invloed van de stabiliteit van de kern op de halveringstijd, het verband tussen aantal deeltjes en activiteit en de verschillende soorten deeltjes die vrijkomen bij verval. Een groot scala aan onderzoekvragen kan onderzocht worden door leerlingen. Het primaire doel van dit practicum is gevoel krijgen voor alle relaties en grootheden die een rol spelen bij radioactiviteit.
De volgende leerdoelen kunnen bereikt worden met deze simulatie:
De volgende onderwerpen kunnen ook als start van de les worden geïntroduceerd.
Het scherm van de simulatie staat hieronder afgebeeld:
Figuur 2 Layout van de simulatie
Het bestaat uit een aantal onderdelen. Aan de linkerkant staan schuifbalken en knoppen om de simulatie in te stellen:
Met de bovenste schuifknop stel je het aantal atomen in die deelnemen aan de simulatie. Als leerlingen gebruik maken van Chromebook kan het verstandig zijn om die lager te zetten.
Met de tweede schuifbalk kan de stabiliteit van de kern worden ingesteld. Als de stabiliteit op 10 wordt gezet is de kern stabiel, bij de waarde 0 is de kern heel instabiel (heeft dan een hele korte halveringstijd).
De derde knop geeft de mogelijkheid om aan te geven welke stralingsdeeltjes je wilt zien (alles door elkaar, of alleen α, β of γ-deeltjes). Hierdoor gaan sommige kernen α, β of γ-deeltjes uitzenden. Je kunt niet zien welke kern welk soort deeltje gaat uitzenden.
Met de vierde knop kun je stralingsdeeltjes zichtbaar maken of juist niet.
Met de vijfde knop kun je alle kernen in het centrum van het scherm zetten. Als de straling dan zichtbaar wordt gemaakt, is het verschil in dracht/doordringend vermogen heel duidelijk (derde plaatje in figuur 4). Je start de simulatie met de setup knop (alle deeltjes worden “gereset”) en vervolgens met Go.
In het vierkante gespikkelde vlak zijn de deeltjes weergegeven. Blauwe deeltjes zijn niet vervallen, kernen en roze deeltjes zijn reeds vervallen. De overgang van de ene naar de andere kleur geeft het vervalproces weer (Figuur 4, linker paneel). Als de stralingsdeeltjes zichtbaar worden gemaakt dan krijg je het beeld van figuur 4 midden paneel. Worden alle deeltjes in het centrum weergegeven dan ontstaat figuur 4 rechter paneel. Hierin worden α-deeltjes weer gegeven in het geel, β-deeltjes in het groen en γ-deeljes in het oranje.
Figuur 4 Verschillende weergaven van de simulatie.
Naast het vierkante vlak staan 4 monitoren (figuur 5) die real-time weergeven wat de waarde is van verschillende variabelen (aantal vervallen atomen, aantal nieuwe atomen (de roze), nog bestaande atomen (de blauwe) en de tijd die is verstreken (in simulatiecycli). Rechts van deze monitoren staan vier diagrammen (figuur 6) die ontstaan tijdens de simulatie. Elk moment kan de simulatie stop gezet worden door op de Go knop te klikken. De diagrammen en monitoren kunnen dan afgelezen worden. Het linker boven paneel geeft het N(t)-diagram voor moederkernen en dochterkernen, het rechter boven paneel het A(t) diagram, links onder het A(N) diagram en rechts onder het aantal stralingsdeeltjes (de grafiek is alleen zichtbaar als de straling zichtbaar is, de deeltjes hebben een levensduur (afhankelijk van de dracht/doordringend vermogen)). Op t=0 s zijn er geen deeltjes, omdat het verval nog moet beginnen.
Figuur 6 Diagrammen
De groene horizontale lijnen in het linker boven paneel geven steeds een halvering aan van het aantal deeltjes. De rode lijnen geven de bijbehorende tijden aan. De regelmaat in de rode lijnen ontstaat door de halveringstijd. Aan het eind van de simulatie wordt deze regelmaat minder door het statistische karakter van verval.
Onder de diagrammen staan nog 4 monitoren die informatie geven over de stralingsdeeltjes (figuur 7).
Figuur 7 Monitoren met informatie over de uitgezonden straling
Deze simulatie kan gebruikt worden tijdens de eerste les over het onderwerp straling. De introductie zou kunnen bestaan uit:
Na de introductie kan de les worden vervolgd met groepswerk. Verdeel hiertoe de klas in groepjes van 3 personen en geef elk groepje een whiteboard met stiften. Geef vervolgens elk groepje zijn eigen onderzoeksvraag, bijvoorbeeld, de lijst hieronder:
Bepaal het kwalitatieve verband tussen:
De docent kiest zelf welke onderzoeksvragen moeten worden uitgewerkt.
Laat leerlingen op zoek gaan overeenkomsten en verschillen in hun eigen onderzoeken.
Na de experimentele fase gaan de leerlingen in de kring zitten en bespreken de overeenkomsten en verschillen tussen hun borden. De docent stuurt het gesprek in de richting van de gewenste uitkomsten en stelt sturende vragen als
Probeer de leerlingen door deze vragen te laten nadenken over welke grootheden elkaar beïnvloeden en welke niet. Als er overeenstemming is bereikt over een relatie, noteer deze dan op het bord.
Sluit de les af met het maken van notities in het logboek. Dit kan in samenspraak met de klas eerst op het bord gedaan worden en daarna overgenomen in het schrift.
Tijdsplanning (80 minuten les):
Klassenorganisatie
Deze simulatie is vooral bedoeld om kwalitatieve verbanden te geven. Formules komen in een volgende les.
Ervaringen
Dit simulatiepracticum werd gebruikt als eerste les in 4 havo over straling en radioactiviteit. Leerlingen kwamen de grootheden N, A, etc. voor het eerst tegen in de grafieken en dat ging verrassend goed. De leerlingen hadden al ruim een half jaar ervaring met modeldidactiek en de whiteboards. Ervaringen werden beschreven in een NVOX artikel (Baars, 2023).
Baars, C. (2023). Modeling instruction met simulaties. NVOX, 48(9), 22-23.
[1] https://www.netlogoweb.org/launch#https://www.netlogoweb.org