Boxplots
Een andere manier om naar de gegevens te kijken is de volgende. Deel de populatie in in vier gelijke stukken (kwarten). Zet daarvoor eerst alle data op volgorde van grootte. Als voorbeeld nemen we de gemiddelde cijfers in de A/C-groep. Dat zijn er 43:
6,0 ; 6,0 ; 6,1 ; 6,5 ; 6,5 ; 6,5 ; 6,5 ; 6,5 ; 6,5 ; 6,6 ; 6,6 ; 6,8 ; 6,8 ; 6,8 ; 6,9 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,0 ; 7,2 ; 7,3 ; 7,3 ; 7,3 ; 7,5 ; 7,5 ; 7,5 ; 7,5 ; 7,5 ; 7,6 ; 7,8 ; 7,8 ; 8,0
Deze verzameling cijfers verdeel je in twee gelijke helften van elk 21 cijfers. Het middelste cijfer is 7,0; dat is hierboven vet gemaakt. Links daarvan staan van de data en rechts daarvan ook. Dit is de mediaan van de cijfers. Bij een even aantal cijfers zijn er twee middelsten. In dat geval nemen we het gemiddelde van die middelsten; dat is dan de mediaan.
De mediaan verdeelt de cijfers in twee even grote helften.
Op dezelfde manier bepaal je het middelste cijfer van de linkerhelft en ook van de rechterhelft. Die zijn ook vet: 6,6 en 7,3. Dat zijn de zogenaamde kwartielen. 6,6 is het eerste kwartiel, 7,3 is het derde kwartiel. Het tweede kwartiel is de mediaan. De kwartielen verdelen de verzameling van alle data dus in vier gelijke stukken; elk van (ruwweg) .
|
Opmerking:
Het gaat hier om een globale verdeling; kwartielen worden gebruikt voor grote databestanden.
|