6.4.1. Effect-based monitoring: In vitro bioassays

Author: Timo Hamers

Reviewer: Beate Escher

 

Learning objectives:

You should be able to

 

Key words: effect-based monitoring; cell line; reporter gene assay; toxicity profile; trigger value

 

 

Effect-based monitoring

Diagnosis of the chemical status of the environment is traditionally performed by the analytical detection of a limited number  of chemical compounds. Environmental quality is then assessed by making a compound-by-compound comparison between the measured concentration of an individual contaminant and its environmental quality standard (EQS). Such a compound-by-compound approach, however, cannot cover the full spectrum of contaminants given the unknown identity of the vast majority of compounds released into the environment. It also ignores the presence of unknown breakdown products formed during degradation processes and the presence of compounds with concentration levels below the analytical limit of detection. Furthermore, it overlooks combined effects of contaminants present in the complex environmental mixture.

To overcome these shortcomings, effect-based monitoring has been proposed as a comprehensive and cost-effective, complementary strategy to chemical analysis for the diagnosis of environmental chemical quality. In effect-based monitoring the toxic potency of the complex mixture is determined as a whole by testing environmental samples in bioassays. Bioassays are defined as “biological test systems that consist of whole organisms or parts of organisms (e.g., tissues, cells, proteins), which show a measurable and potentially biologically relevant response when exposed to natural or xenobiotic compounds, or complex mixtures present in environmental samples” (Hamers et al. 2010).

Bioassays making use of whole organisms are further referred to as in vivo bioassays (in vivo means “while living”). In vivo bioassays have relatively high ecological relevance as they provide information on survival, reproduction, growth, or behaviour of the species tested. In vivo bioassays will be addressed in a separate section.

 

In vitro bioassays

Bioassays making use of tissues, cells, proteins are called in vitro bioassays (in vitro means “in glass”), as – in the past –they were typically performed in test tubes or petri dishes made from glass. Nowadays, in vitro bioassays are more often performed in microtiter wells-plates containing multiple (6, 12, 24, 48, 96, 384, or 1536) test containers (called “wells”) per plate. Most in vitro bioassays show a very mechanism-specific response, which is for instance indicative of the inhibition of a specific enzyme or the activation of a specific molecular receptor.

In addition to the mechanism-specific information about the complex mixture present in the environment, in vitro bioassays have several other advantages. Small test volumes, for instance, make the in vitro assays suitable to test small samples. If sampling volumes are not restricted, however, the small volume of the in vitro bioassays allow that pre-concentrated samples (i.e. extracts) can be tested. Moreover, in vitro bioassays have short test durations (usually incubation periods range from 15 minutes to 48 hours) and can be performed in relatively high-throughput, i.e. multiple samples can be tested per microtiter plate experiment. Microtiter plate experiments require an easy read-out (e.g. luminescence, fluorescence, optical density), which is typically a direct measure for the toxic potency to which the bioassay was exposed. Finally, using cells or proteins for toxicity testing raises less ethical objections than the use of intact organisms as is done in in vivo bioassays.

Cell-based in vitro bioassays can make use of different types of cells. Cells can be isolated from animal tissue and be grown in medium in cell culture flasks. If a flask grows full, cells can be diluted in fresh medium and be distributed over several new flasks (i.e. “passaging”). For cells freshly isolated from animal tissue (called primary cells), however, the number of passages is limited, due to the fact that the cells have a limited number of cell doublings. Thus, the use of primary cells in environmental monitoring is not preferred, as preparation of cell cultures is time-consuming and requires the use of animals. Moreover, the composition and activity of the cells may change from batch to batch. Instead, environmental monitoring often makes use of cell lines. A cell line is a cell culture derived from a single cell which has been immortalized, allowing the cell to divide infinitely. Immortalization of cells is obtained by selecting either a (mutated) cancer cell from a donor animal or human being, or by causing a mutation in an a healthy cell after isolation using chemicals or viruses. The advantage of a cell line is that all cells are genetically identical and can be used for an indefinite number of experiments. The drawback of cell lines is that the cells are cancer cells that do not behave like a healthy cell in an intact organism. For instance, cancer cells have lost  their differentiated properties and have a short cell cycle due to increased proliferation (see section on In vitro toxicity testing).

 

Examples of in vitro bioassays

Reporter gene bioassays are a type of in vitro bioassays that are frequently used in effect-based monitoring. Such bioassays make use of genetically modified cell lines or bacteria that contain an incorporated gene construct encoding for an easily measurable protein (i.e. the reporter protein). This gene construct is developed in such a way that its expression is triggered by a specific interaction between the toxic compound and a cellular receptor. If the receptor is activated by the toxic compound, transcription and translation of the reporter protein takes place, which can be easily measured as a change in colour, fluorescence, or luminescence.

 

The most well-known reporter gene bioassays are steroid hormone-sensitive bioassays. These bioassays are based on the principle by which steroid hormones act, i.e. activation of a receptor protein followed by translocation of the hormone-receptor complex to the nucleus where it binds to a hormone-responsive element of the DNA, thereby initiating transcription and translation of steroid hormone-dependent genes. In case of a hormone-responsive reporter gene bioassay, the reporter gene construct is also under transcriptional control of a hormone-responsive element. Activation of the steroid hormone receptor by an endocrine disrupting compound thus leads to expression of the reporter protein, which can easily be measured. Estrogenic activity, for instance, is typically measured in cell lines in which a plasmid is stably transfected  into the cellular genome that encodes for the reporter protein luciferase (Figure 1). Expression of this enzyme is under transcriptional control of an estrogen-responsive element (ERE). Upon exposure to an environmental sample, estrogenic compounds present in the sample may enter the cell and bind and activate the estrogen receptor (ER). The activated ER forms a dimer with another activated ER and is translocated to the nucleus where the dimer binds to the ERE, causing transcription and translation of the luciferase reporter gene. After 24 hours, the exposure is terminated and the amount of luciferase enzyme can be easily quantified by lysis of the cells and adding the energy source ATP and the substrate luciferin. Luciferin is hydrolysed by luciferase, which is associated with the emission of light (i.e. the same reaction as occurs in fireflies or in glowing worms). The amount of light produced by the cells is quantified in a luminometer and is a direct measure for the estrogenic potency of the complex mixture to which the cells were exposed.

 

Figure 1: Principle of an estrogen responsive reporter gene assay: estrogenic compounds (red) enter the cell and activate the estrogen receptor (ER; triangle). Activated ERs form a dimer that is translocated to the nucleus where they bind to estrogen response elements (EREs). The regular subsequent pathway is indicated in black: estrogen responsive genes are transcribed into mRNA and translated into proteins that cause feminizing effects. The reporter gene pathway is indicated in blue: the reporter gene, which is also under transcriptional control of the ERE, is transcribed and translated into the reporter protein luciferase. Upon opening of the cell (lysis) and addition of the substrate luciferin and ATP as energy source, light is produced, which is a direct measure for the amount of luciferase produced, and thereby also for the estrogenic potency to which the cells were exposed.

 

Another classic bioassay for the detection of dioxin-like compounds is the ethoxyresorufin-o-deethylase (EROD) bioassay (Figure 2). The EROD bioassay is an enzyme induction bioassay that makes use of a hepatic cell line (i.e. derived from liver cells). Similar as described for the estrogenic compounds, dioxin-like compounds can enter these cells upon exposure to an environmental sample, and bind and activate a receptor protein, i.c. the arylhydrocarbon receptor (AhR) (see section on Receptor interactions). The activated AhR is subsequently translocated to the nucleus where it forms a dimer with another transcription factor (ARNT) that binds to the dioxin responsive element (DRE), causing transcription and translation of dioxin-responsive genes. One of these genes encodes for CYP1A1, a typical Phase I biotransformation enzyme. Upon lysis of the cells and addition of the substrate ethoxyresorufin, CYP1A1 is capable of hydrolysing this substrate into ethanol and resorufin, which is a fluorescent reaction product that can be measured easily. As such, the amount of fluorescence is a direct measure for the dioxin-like potency to which the cells were exposed.

 

Figure 2: Simplified representation of the EROD (ethoxyresorufin-O-deethylase) assay. Dioxin-like compounds enter the hepatic cell and bind to the arylhydrocarbon receptor (AhR), which is translocated to the nucleus where it binds to dioxin-responsive elements (DREs) in the DNA. This causes transcription and translation of cytochrome P-4501A1 (CYP1A1). After 24h of incubation, the cells are lysed and the substrate ethoxyresorufin is added, which is oxidized by CYP1A1 into the fluorescent (pink) product resorufin

 

Another classic bioassay is the acetylcholinesterase (AChE) inhibition assay for the detection of organophosphate and carbamate insecticides (Figure 3). By making a covalent bond to the active site of the AChE enzyme, these compounds are capable of inhibiting the hydrolysis of the neurotransmitter acetylcholine (ACh) (see section on Protein inactivation). The in vitro AChE inhibition assay makes use of the principle that AChE can also hydrolyse an alternative substrate called acetylthiocholine (ATCh) into acetic acid and thiocholine (TCh). AChE inhibition leads to a decreased rate of TCh formation, which can be measured using an indicator, called Ellman’s reagent. This indicator reacts with the thiol (-SH) group of TCh, resulting in a yellow breakdown product that can easily be measured photometrically. In the bioassay, purified AChE (commercially available for instance from electric eel) is incubated with an environmental sample in the presence of ATCh and Ellman’s reagent. A decrease in the rate by which the yellow reaction product is formed is a direct measure for the inhibition of the AChE activity.

 

Figure 3: Principle of AChE inhibition: The normal hydrolysis of the neurotransmitter ACh by AChE is shown in the top row (1). The inhibition of AChE by the organophosphate insecticide dichlorvos is shown in the middle row (2). The phosphate ester-group does not release from the AChE active site, causing a decrease in AChE available for ACh hydrolysis. The principle of the AChE inhibition assay is shown in the bottom row (3). The remaining AChE activity is measured using an alternative substrate ATCh. The thiocholine product can be measured using the DTNB indicator (Ellman’s reagent), which reacts with the thiol group, leading to a disulphide and a free TNB molecule. The yellow colour of the latter allows photometric quantification of the reaction.

 

Another bioassay that is used to detect mutagenic compounds in environmental samples is the Ames assay, which has been described in the section on Carcinogenicity and Genotoxicity.

 

Interpretation of the toxicity profile

In practice, multiple mechanism-specific in vitro bioassays are often combined into a test battery to cover the spectrum of toxicological endpoints in an (eco)system. As such, the battery can be considered as a safety net that signals the presence of toxic compounds at low concentrations. However, the question what combination of in vitro tests provides a sufficient level of coverage for the toxicological endpoints of concern still is an open one.

 

Still, testing an environmental sample in a battery of mechanism-specific in vitro bioassays yields a toxicity profile of the sample, indicating its toxic potency towards different endpoints. Two main strategies have been described to interpret in vitro toxicity profiles in terms of risk. In the “benchmark strategy”, the toxicity profiles are compared to one or more reference profiles (Figure 4). A reference profile may be defined as the profile that is generally observed in environmental samples from locations with good chemical and/or ecological quality. The benchmark approach indicates to what extent the observed toxicity profile deviates from a toxicity profile corresponding to the desired environmental quality. It also indicates the endpoints that are most affected by the environmental sample.

 

Figure 4: Example of a benchmark approach, in which toxicity profiles for sediment samples from different water systems (different colours blue) have been compared to their own reference profile (all green boxes). Colours green-yellow-orange-red indicate an increase in bioassay response. Different bioassays have been indicated at the top of the Figure. The tree-like structure (dendrogram) at the right indicates the relative distance between the different toxicity profiles. It clearly distinguishes between reference sites and clean sites on the one hand and harbour sites on the other hand. In between are samples from shipping lanes (Moerdijk and Nieuwe Maas). Zierikzee Inner Harbor is clearly a location with a deviating toxicity profile that is not similar to other harbour sites. Redrawn from Hamers et al. (2010) by Wilma IJzerman.

 

In the “trigger value strategy” the response of each individual bioassay is compared to a bioassay response level at which chemicals are not expected to cause adverse effects at higher levels of biological organization. This endpoint-specific “safe” bioassay response level is called an effect-based trigger (EBT) value. The method for deriving EBT values is still under development. It can be based on different criteria, such as laboratory toxicity data, field concentrations, or EU environmental quality standards (EQS) of individual compounds, which are translated into bioassay-specific effect-levels (see section on Effect-based water quality assessment).

 

In addition to the benchmark and trigger value approaches focusing on environmental risk assessment, effect-based monitoring with in vitro bioassays can also be used for effect-directed analysis (EDA). EDA focuses on samples that cause bioassay responses that cannot be explained by the chemicals that were analyzed in these samples. The goal of EDA is to detect and identify emerging contaminants that are responsible for the unexplained bioassay response and are not chemically analyzed because their presence or identity is unknown. In EDA, in vitro bioassay responses to fractionated samples are used to steer the chemical identification process of unknown compounds with toxic properties in the bioassays (see section on Effect-Directed Analysis).

 

Further reading:

Hamers, T., Leonards, P.E.G., Legler, J., Vethaak, A.D., Schipper, C.A. (2010). Toxicity profiling: an integrated effect-based tool for site-specific sediment quality assessment. Integrated Environmental Assessment and Management 6, 761-773