6.3.2. Environmental realistic scenarios (PECs) – Eco

Authors: Jos Boesten, Theo Brock

Reviewer: Ad Ragas, Andreu Rico

 

Learning objectives:

You should be able to:

 

Keywords: pesticides, exposure, scenarios, assessment goals, effects

 

 

Role of exposure scenarios in environmental risk assessment (ERA)

An exposure scenario describes the combination of circumstances needed to estimate exposure by means of models. For example, scenarios for modelling pesticides exposure can be defined as a combination of abiotic (e.g. properties and dimensions of the receiving environment and related soil, hydrological and climate characteristics) and agronomic (e.g. crops and related pesticide application) parameters that are thought to represent a realistic worst-case situation for the environmental context in which the exposure model is to be run. A scenario for exposure of aquatic organisms could be e.g. a ditch with a minimum water depth of 30 cm alongside a crop growing on a clay soil with annual applications of pesticide using a 20-year time series of weather data and including pesticide exposure via spray drift deposition and leaching from drainpipes. Such a scenario would require modelling of spray drift, leaching from drainpipes and exposure in surface water, ending up in a 20-year time series of the exposure concentration. In this chapter, we explain the use of exposure scenarios in prospective ERA by giving examples for the regulatory assessment of pesticides in particular.

 

Need for defining exposure assessment goals

Between about 1995 and 2001 groundwater and surface water scenarios were developed for EU pesticide registration; also referred to as the FOCUS scenarios. The European Commission indicated that these should represent ‘realistic worst-cases’, a political concept which leaves considerable room for scientific interpretation. Risk assessors and managers agreed that the intention was to generate 90th percentile exposure concentrations. The concept of a 90th percentile exposure concentration assumes a statistical population of concentrations and 90% of these concentrations are lower than this 90th percentile (and thus 10% are higher). This 90th percentile approach has since then been followed for most environmental exposure assessments for pesticides at EU level.

 

The selection of the FOCUS groundwater and surface water scenarios involved a considerable amount of expert judgement because this selection could not yet be based on well-defined GIS procedures and databases on properties of the receiving environment. The EFSA exposure assessment for soil organisms was the first environmental exposure assessment that could be based on a well-defined GIS procedure, using EU maps of parameters like soil organic matter, density of crops and weather. During the development of this exposure assessment, it became clear that the concept of a 90th percentile exposure concentration is too vague: it is essential to define also the statistical population of concentrations from which this 90th percentile is taken. Based on this insight, the EFSA Panel on Plant Protection Products and their Residues (PPR) developed the concept of the exposure assessment goals, which has become the standard within EFSA for developing regulatory exposure scenarios for pesticides.

 

Procedure for defining exposure assessment goals

Figure 1 shows how an exposure assessment goal for the risk assessment of aquatic organisms can be defined following this EFSA procedure. The left part specifies the temporal dimensions and the right part the spatial dimensions. In box E1, the Ecotoxicologically Relevant type of Concentration (ERC) is defined, e.g. the freely dissolved pesticide concentration in water for pelagic organisms. In box E2, the temporal dimension of this concentration is defined, e.g. annual peak or time-weighted average concentration for a pre-defined period. Based on these elements, the multi-year temporal population of concentrations can be generated for one single water body (E5) which would consist of e.g. 20 peak concentrations in case of a time series of 20 years. The spatial part requires definition of the type of water body (e.g. ditch, stream or pond; box E3) and the spatial dimension of this body (e.g. having a minimum water depth of 30 cm; box E4). Based on these, the spatial population of water bodies can be defined (box E6), e.g. all ditches with a minimum water depth of 30 cm alongside fields treated with the pesticide. Finally, then in box E7 the percentile combination to be taken from the spatial-temporal population of concentrations is defined. Specification of the exposure assessment goals does not only involve scientific information, but also political choices because this specification influences the strictness of the exposure assessment. For instance, in case of exposure via spray drift a minimum water depth of 30 cm in box E4 leads to about a three times lower peak concentration in the water than a minimum water depth of 10 cm.

 

Figure 1. Scheme of the seven elements of the exposure assessment goal for aquatic organisms.

 

The schematic approach of Figure 1 can easily be adapted to other exposure assessment goals.

 

Interaction between exposure and effect assessment for organisms

Nearly all the environmental protection goals for pesticides involve assessment of risk for organisms; only groundwater and drinking water from surface water are based on a concentration of 0.1 μg/L which is not related to possible ecotoxicological effects. The risk assessment for organisms is a combination of an exposure assessment and an effect assessment as is illustrated by Figure 2.

 

Figure 2. Overview of the risk assessment of organisms based on parallel tiered effect and exposure assessments.

 

Both the effect and the exposure assessment are tiered approaches with simple and conservative first tiers and less simple and more realistic higher tiers. A lower exposure tier may consist of a simple conservative scenario whereas a higher exposure tier may e.g. be based on a scenario selected using sophisticated spatial modelling. The top part of the scheme shows the link to the risk managers which are responsible for the overall level of protection. This overall level of protection is linked to the so-called Specific Protection Goals which will be explained in Section 6.5.3 and form the basis for the definition of the effect and exposure assessment goals. So the exposure assessment goals and resulting exposure scenarios should be consistent with the Specific Protection Goals (e.g. algae and fish may require different scenarios). When linking the two assessments, it has to be ensured that the type of concentration delivered by the exposure assessment is consistent with that required by the effect assessment (e.g. do not use time-weighted average concentrations in acute effect assessment). Figure 2 shows that in the assessment procedure information flows always from the exposure assessment to the effect assessment because the risk assessment conclusion is based on the effect assessment.

 

A relatively new development is to assess exposure and effects at the landscape level. This typically is a combination of higher-tier effect and exposure assessments. In such an approach, first the dynamics in exposure is assessed for the full landscape, and then combined with the dynamics of effects, for example based on spatially-explicit population models for species typical for that landscape. Such an approach makes a separate definition of the exposure and effect scenario redundant because this approach aims to deliver the exposure and effect assessment in an integrated way in space and time. Such an integrated approach requires the definition of “environmental scenarios”. Environmental scenarios integrate both the parameters needed to define the exposure (exposure scenario) and those needed to calculate direct and indirect effects and recovery (ecological scenario) (see Figure 3). However, it will probably take at least a decade before landscape-level approaches, including agreed-upon environmental scenarios, will be implemented for regulatory use in prospective ERA.

 

Figure 3. Conceptual framework of the role of an environmental scenario in prospective ERA (adapted after Rico et al. 2016).

 

 

References

 

Boesten, J.J.T.I. (2017). Conceptual considerations on exposure assessment goals for aquatic pesticide risks at EU level. Pest Management Science 74, 264-274.

Brock, T.C.M., Alix, A., Brown, C.D., et al. (2010). Linking aquatic exposure and effects: risk assessment of pesticides. SETAC Press & CRC Press, Taylor & Francis Group, Boca Raton, FL, 398 pp.

Rico, A., Van den Brink, P.J., Gylstra, R., Focks, A., Brock, T.C.M. (2016). Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. Integrated Environmental Assessment and Management 12, 510-521.