Author: Michiel Kraak
Reviewers: Ad Ragas and Kees van Gestel
Learning objectives:
You should be able to
Keywords: hazard assessment, risk assessment, prognosis, diagnosis, effect based monitoring, bioassays, effect directed analysis, mesocosm, biomonitoring, TRIAD approach, eco-epidemiology.
To determine whether organisms are at risk when exposed to certain concentrations of hazardous compounds in the field, the toxicity of environmental samples can be analysed. To this purpose, several approaches and techniques have been developed, known as diagnostic tools. The tools described in Sections 6.5.1-6.5.8 have in common that they make use of living organisms to assess environmental quality. This is generally achieved by performing bioassays in which the selected test species are exposed to (concentrates or dilutions of) environmental samples after which their performance (survival, growth, reproduction etc) is measured. The species selected as test organisms for bioassays are generally the same as the ones selected for toxicity tests (see section on Selection of ecotoxicity test organisms).
Each biological organization level has its own battery of test methods. At the lowest level of biological organization, a wide variety of in vitro bioassays is available (see section Effect based monitoring: in vitro bioassays). These comprise tests based on cell lines, but also bacteria and zebra fish embryos are employed. If the response of a bioassay to an environmental sample exceeds the predefined effect-based trigger value, the response is considered to be indicative of ecological risks. Yet, the compounds causing the observed toxicity are initially unknown. However, these can subsequently be elucidated with Effect Directed Analysis (see section Effect Directed Analysis). The sample causing the effect is subjected to fractionation and the fractions are tested again. This procedure is repeated until the sample is reduced to a few individual compounds, which can then be identified allowing to confirm their contribution to the observed toxic effects.
At higher levels of biological organization, a wide variety of in vivo tests and test organisms are available, including terrestrial and aquatic plants and animals (see section Effect based monitoring: in vivo bioassays). Yet, different test species tend to respond very differently to specific toxicants and specific field collected samples. Hence, the results of a single species bioassay may not reliably reflect the risk of exposure to a specific environmental sample. To avoid over- and underestimation of environmental risks, it is therefore advisable to employ a battery of in vitro and in vivo bioassays. In a case study on effect-based water quality assessment, we showed the great potential of this approach, resulting in the ranking of sites based on ecological risks rather than on the absence or presence of compounds (see section Effect based water quality assessment).
At the higher levels of biological organization, effect-based monitoring tools include bioassays performed in mesocosms (see section Community Ecotoxicology in practice) and in the field itself, the so called in situ bioassays (see section Biomonitoring: in situ bioassays and contaminant concentrations in organisms ). Cosm studies represent a bridge between the laboratory and the natural world. The originality of mesocosms is based on the combination of ecological realism, the ability to manipulate different environmental parameters and still having the opportunity to replicate treatments.
In the field, the aim of biomonitoring is the in situ assessment of environmental quality on a regular basis in time, using living organisms (see section Biomonitoring: in situ bioassays and contaminant concentrations in organisms ). Organisms are collected from reference sites and exposed in cages or artificial substrates at the study sites, after which they are recollected and either their condition is analysed (in situ bioassay) or the internal concentrations of specific target compounds are measured, or both (see section Biomonitoring: in situ bioassays and contaminant concentrations in organisms).
Finally, two approaches will be introduced that aid to bridge policy goals and ecosystem responses to perturbation: the TRIAD approach and eco-epidemiology. The TRIAD approach is a tool for site-specific ecological risk assessment, combining and integrating information on contaminant concentrations, bioassay results and ecological field inventories in a ‘Weight of Evidence’ approach (see section TRIAD approach). Eco-epidemiology is defined as the study of the distribution and causation of impacts of multiple stressor exposures in ecosystems, and the application of this study to reduce ecological impacts (see section Eco-epidemiology).