Author: Jessica Legradi
Reviewers: Timo Hamers, Ellen Fritsche
Learning objectives
You should be able to
Keywords: Nervous system, Signal transmission, Pesticides, Drugs, Developmental Neurotoxicity
Neurotoxicity
Neurotoxicity is defined as the capability of agents to cause adverse effects on the nervous system. Environmental neurotoxicity describes neurotoxicity caused by exposure to chemicals from the environment and mostly refers to human exposure and human neurotoxicity. Ecological neurotoxicity (eco-neurotoxicity) is defined as neurotoxicity resulting from exposure to environmental chemicals in species other than humans (e.g. fish, birds, invertebrates).
The nervous system
The nervous system consists of the central nervous system (CNS) including the brain and the spinal cord and the peripheral nervous system (PNS). The PNS is divided into the somatic system (voluntary movements), the autonomic (sympathic and parasympathic) system and the enteric (gastrointestinal) system. The CNS and PNS are built from two types of nerve cells, i.e. neurons and glial cells. Neurons are cells that receive, process, and transmit information through electrical and chemical signals. Neurons consist of the soma with the surrounding dendrites and one axon with an axon terminal where the signal is transmitted to another cell (Figure 1A). Compared to neurons, glial cells can have very different appearances (Figure 1B), but are always found in the surrounding tissue of neurons where they provide metabolites, support and protection to neurons without being directly involved in signal transmission.
Figure 1. Structures of a neuron (top) and of glial cells (bottom). Redrawn from https://simple.wikipedia.org/wiki/Neuron and https://www.123rf.com/photo_34262842_stock-vector-types-of-neuroglia-classification-of-glial-cells-microglia-astrocytes-oligodendrocytes-and-schwann-c.html, respectively by Evelin Karsten-Meessen.
Neurons are connected to each other via synapses. The sending neuron is called the presynaptic neuron whereas the receiving neuron is the postsynaptic neuron. In the synapse, a small space exists between the axon terminal of the presynaptic neuron and a dendrite of the postsynaptic neuron. This space is named synaptic cleft. Both neurons have ion channels that can be opened and closed in the area of the synapse. There are channels selective for chloride, sodium, calcium, potassium, or protons and non-selective channels. The channels can be voltage gated (i.e. they open and close depending on the membrane potential), ligand gated (i.e. they open and close depending on the presence of other molecules binding to the ion channel), or they can be stress activated (i.e. they open and close due to physical stress (stretching)). Ligands that can open or close ion channels are called neurotransmitters. Depending on the ion channel and if it opens or closes upon neurotransmitter binding, a neurotransmitter can inhibit or stimulate membrane depolarization (i.e. inhibitory or excitatory neurotransmitter, respectively). The ligands bind to the ion channel via receptors (link to section on Receptor interaction). Neurotransmitters have very distinct functions and are linked to physical processes like muscle contraction and body heat and to emotional/cognitive processes like anxiety, pleasure, relaxing and learning. The signal transmission via the synapse (i.e. neurotransmission) is illustrated in Figure 2.
Figure 2: Synaptic neurotransmission by the excitatory neurotransmitter acetylcholinesterase (ACh): 1. action potential arrives at presynaptic neuron; 2. stimulates opening of voltage-gated channels for Ca2+; 3. Ca2+ diffuses into the cytoplasm of the presynaptic cell; 4+5. Ca2+ causes vesicles containing ACh to move towards the presynaptic membrane; 6. ACh loaded vesicles fuse with the membrane, ACh is released and diffuses across the synaptic cleft; 7. ACh temporarily binds to receptor proteins on the postsynaptic membrane; causing ligand-gated ion channels for Na+ to open; 8. Na+ diffuses through postsynaptic membrane, depolarizes the membrane and generates an action potential. Source: http://biology4alevel.blogspot.com/2016/06/122-synapses.html
The cell membrane of a neuron contains channels that allow ions to enter and exit the neuron. This flow of ions is used to send signals from one neuron to the other. The difference in concentration of negatively and positively charged ions on the inner and outer side of the neuronal membrane creates a voltage across the membrane called the membrane potential. When a neuron is at rest (i.e. not signalling), the inside charge of the neuron is negative relative to the outside. The cell membrane is then at its resting potential. When a neuron is signalling, however, changes in ion inflow and outflow of ions lead to a quick depolarization followed by a repolarization of the membrane potential called action potential. A video showing how the action potential is produced can be found here.
Neurons can be damaged via substances that damage the cell body (neuronopathy), the axon (axonopathy), or the myelin sheet or glial cells (myelopathy). Aluminum, arsenic, methanol, methylmercury and lead can cause neuropathy. Acrylamide is known to specifically affect axons and cause axonopathy.
Neurotransmitter system related Modes of Action of neurotoxicity
Some of the modes of action relevant for neurotoxicity are disturbances of electric signal transmission and inhibition of chemical signal transmission, mainly through interference with the neurotransmitters. Pesticides are mostly designed to interfere with neurotransmission.
1. Interfering with Ion channels (see section on Receptor interaction)
Pesticides such as DDT bind to open sodium channels in neurons, which prevents closing of the channels and leads to over-excitation. Pyrethroids, such as permethrin, increase the time of opening of the sodium channels, leading to similar symptoms. Lindane, cyclodiene insecticides like aldrin, dieldrin and endrin (“drins”) and phenyl-pyrazols such as fipronil block GABA-mediated chloride channels and prevent hyperpolarization. GABA (gamma-aminobutyric acid) is an inhibitory neurotransmitter which is linked to relaxation and calming. It stimulates opening of chloride channels causing the transmembrane potential to become more negative (i.e. hyperpolarization), thereby increasing the depolarisation threshold for a new action potential. Blockers of GABA-mediated chloride channels prevent the hyperpolarizing effect of GABA, thereby decreasing the inhibitory effect of GABA. Neonicotinoids (e.g., imidacloprid) mimic the action of the excitatory neurotransmitter ACh by activating the nicotinic acetylcholine receptors (nAChR) in the postsynaptic membrane. These compounds are specifically designed for displaying a high affinity to insect nAChR.
Many human drugs, like sedatives also bind to neuro-receptors. Benzodiazepine drugs activate GABA-receptors causing hyperpolarization (activating GABA). Tetrahydrocannabinol (THC), which is the active ingredient in cannabis, activates the cannabinoid receptors also causing hyperpolarization. Compounds activating the GABA or cannabinoid receptors induce a strong feeling of relaxation. Nicotine binds and activates the AChR, which can help to concentrate.
2. AChE inhibition
Another very common neurotoxic mode of action is the inhibition of acetylcholinesterase (AChE). Organophosphate insecticides like dichlorvos and carbamate insecticides like propoxur bind to AChE, and hence prevent the degradation of acetylcholine in the synaptic cleft, leading to overexcitation of the post-synaptic cell membrane (see also section on Protein interaction).
3. Blocking Neurotransmitter uptake
MDMA (3,4-methylenedioxymethamphetamine, also known as ecstasy or XTC) and cocaine block the re-uptake of serotonin, norepinephrine and to a lesser amount dopamine into the pre-synaptic neuron, thereby increasing the amount of these neurotransmitters in the synaptic cleft. Amphetamines also increase the amount of dopamine in the cleft by stimulating the release of dopamine form the vesicles. Dopamine is a neurotransmitter which is involved in pleasure and reward feelings. Serotonin or 5-hydroxytryptamine is a monoamine neurotransmitter linked to feelings of happiness, learning, reward and memory.
Long term exposure
When receptors are continuously activated or when neurotransmitter levels are continuously elevated, the nervous system adapts by becoming less sensitive to the stimulus. This explains why drug addicts have to increase the number of drugs taken to get to the desired state. If no stimulant is taken, withdrawal symptoms occur from the lack of stimulus. In most cases, the nervous system can recover from drug addiction.
Species Sensitivity in Neurotoxicity
Differences in species sensitivity can be explained by differences in metabolic capacities between species. Most compounds need to be bio-activated, i.e. being biotransformed into a metabolite that causes the actual toxic effect. For example, most organophosphate insecticides are thio-phosphoesters that require oxidation prior to causing inhibition of AChE. As detoxification is the dominant pathway in mammals and oxidation is the dominant pathway in invertebrates, organophosphate insecticides are typically more toxic to invertebrates than to vertebrates (see Figure 3). Other factors important for species sensitivity are uptake and depuration rate.
Developmental neurotoxicity
Developmental neurotoxicity (DNT) particularly refers to the effects of toxicants on the developing nervous system of organisms. The developing brain and nervous system are supposed to be more sensitive to toxic effects than the mature brain and nervous system. DNT studies must consider the temporal and regional occurrence of critical developmental processes of the nervous system, and the fact that early life exposure can lead to long-lasting neurotoxic effects or delays in neurological development. Species differences are also relevant for DNT. Here, developmental timing, speed, or cellular specificities might determine toxicity.