Author: Pim E.G. Leonards
Reviewers: Nico van Straalen, Drew Ekman
Learning objectives:
You should be able to:
Keywords: Metabolomics, metabolome, environmental metabolomics, application areas of metabolomics, targeted and untargeted metabolomics, metabolomics analysis and workflow
Introduction
Metabolomics is the systematic study of small organic molecules (<1000 Da) that are intermediates and products formed in cells and biofluids due to metabolic processes. A great variety of small molecules result from the interaction between genes, proteins and metabolites. The primary types of small organic molecules studied are endogenous metabolites (i.e., those that occur naturally in the cell) such as sugars, amino acids, neurotransmitters, hormones, vitamins, and fatty acids. The total number of endogenous metabolites in an organism is still under study but is estimated to be in the thousands. However, this number varies considerably between species and cell types. For instance, brain cells contain relative high levels of neurotransmitters and lipids, nevertheless the levels between different types of brain tissues can vary largely. Metabolites are working in a network, e.g. citric acid cycle, by the conversion of molecules by enzymes. The turnover time of the metabolites is regulated by the enzymes present and the amount of metabolites present.
The field of metabolomics is relatively new compared to genomics, with the first draft of the human metabolome available in 2007. However, the field has grown rapidly since that time due to its recognized ability to reflect molecular changes most closely associated with an organism’s phenotype. Indeed, in comparison to other ‘omics approaches (e.g., transcriptomics), metabolites are the downstream results from the action of genes and proteins and, as such, provide a direct link with the phenotype (Figure 1). The metabolic status of an organism is directly related to its function (e.g. energetic, oxidative, endocrine, and reproductive status) and phenotype, and is, therefore, uniquely suitable to relate chemical stress to the health status of organisms. Moreover, transcriptomics and proteomics, the identification of metabolites does not require the existence of gene sequences, making it particularly useful for the those species which lack a sequenced genome.
Figure 1: Cascade of different omics fields.
Definitions
The complete set of small molecules in a biological system (e.g. cells, body fluids, tissues, organism) is called the metabolome (Table 1). The term metabolomics was introduced by Oliver et al. (1998) who described it “as the complete set of metabolites/low molecular weight compounds which is context dependent, varying according to the physiology, development or pathological state of the cell, tissue, organ or organism”. This quote highlights the observation that the levels of metabolites can vary due to internal as well as external factors, including stress resulting from exposure to environmental contaminants. This has resulted in the emergence and growth of the field of environmental metabolomics which is based on the application of metabolomics, to biological systems that are exposed to environmental contaminants and other relevant stressors (e.g., temperature). In addition to endogenous metabolites, some metabolomic studies also measure changes in the biotransformation of environmental contaminants, food additives, or drugs in cells, the collection of which has been termed the xenometabolome.
Table 1: Definitions of metabolomics.
Term |
Definition |
Relevance for environmental toxicology |
Metabolomics |
Analysis of small organic molecules (<1000 Da) in biological systems (e.g. cell, tissue, organism) |
Functional read-out of the physiological state of a cell or tissue and directly related to the phenotype |
Metabolome |
Measurement of the complete set of small molecules in a biological system |
Discovery of affected metabolic pathways due to contaminant exposure |
Environmental metabolomics |
Metabolomics analysis in biological systems that are exposed to environmental stress, such as the exposure to environmental contaminants |
Metabolomics focused on environmental contaminant exposure to study for instance the mechanism of toxicity or to find a biomarker of exposure or effect |
Xenometabolome |
Metabolites formed from the biotransformation of environmental contaminants, food additives, or drugs |
Understanding the metabolism of the target contaminant |
Targeted metabolomics |
Analysis of a pre-selected set of metabolites in a biological system |
Focus on the effects of environmental contaminants on specific metabolic pathways |
Untargeted metabolomics |
Analysis of all detectable (i.e., not preselected) of metabolites in a biological system |
Discovery-based analysis of the metabolic pathways affected by environmental contaminant exposure |
Environmental Metabolomics Analysis
The development and successful application of metabolomics relies heavily on i) currently available analytical techniques that measure metabolites in cells, tissues, and organisms, ii) the identification of the chemical structures of the metabolites, and iii) characterisation of the metabolic variability within cells, tissues, and organisms.
The aim of metabolomics analysis in environmental toxicology can be:
after environmental contaminant exposure: targeted metabolomics
In targeted metabolomics a limited number of pre-selected metabolites (typically 1-100) are quantitatively analysed (e.g. nmol dopamine/g tissue). For example, metabolites in the neurotransmitter biosynthetic pathway could be targeted to assess exposures to pesticides. Targeting specific metabolites in this way typically allows for their detection at low concentrations with high accuracy. Conversely, in untargeted metabolomics the aim is to detect as many metabolites as possible, regardless of their identities so as to assess as much of the metabolome as possible. The largest challenge for untargeted metabolomics is the identification (annotation) of the chemical structures of the detected metabolites. There is currently no single analytical method able to detect all metabolites in a sample, and therefore a combination of different analytical techniques are used to detect the metabolome. Different techniques are required due to the wide range of physical-chemical properties of the metabolites. The variety of chemical structures of metabolites are shown in Figure 2. Metabolites can be grouped in classes such as fatty acids (the classes are given in brackets in Figure 2), and within a class different metabolites can be found.
Figure 2: Examples of the chemical structures of several commonly detected metabolites. Metabolite classes are indicated in brackets. Drawn by Steven Droge.
A general workflow of environmental metabolomics analysis uses the following steps:
Box: Analytical tools for metabolomics analysis The most frequently used analytical tools for measuring metabolites are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. MS is an analytical tool that generates ions of molecules and then measures their mass-to-charge ratios. This information can be used to generate a “molecular finger print” for each molecule, and based on this finger print metabolites can be identified. Chromatography is typically used to separate the different metabolites of a mixture found in a sample before it enters the mass spectrometer. Two main chromatography techniques are used in metabolomics: liquid chromatography and gas chromatography. Due to its high sensitivity, MS is able to measure a large number of different metabolites simultaneously. Moreover, when coupled with a separation method such as chromatography, MS can detect and identify thousands of metabolites. Mass spectrometry is much more sensitive than NMR, and it can detect a large range of different types of metabolites with different physical-chemical properties. NMR is less sensitive and can therefore detect a lower number of metabolites (typically 50-200). The advantages of NMR are the minimum amount of sample handling, the reproducibility of the measurements (due to high precision), and it is easier to quantify the levels of metabolites. In addition, NMR is a non-destructive technique such that a sample can often be used for further analyses after the data has been acquired. |
Application of environmental metabolomics
Metabolomics has been widely used in drug discovery and medical sciences. More recently, metabolomics is being incorporated into environmental studies, an emerging field of research called environmental metabolomics. Environmental metabolomics is used mainly in five application domains (Table 2). Arguably the most commonly used application is for studying the mechanism of toxicity/mode of action (MoA) of contaminants. However, many studies have identified select metabolites that show promise for use as biomarkers of exposure or effect. As a result of its strength in identifying response fingerprints, metabolomics is also finding use in the regulatory toxicology field particularly for read-across studies. This application is particularly useful for rapidly screening contaminants for toxicity. Metabolomics can be also be used in dose-response studies (benchmark dosing) to derive a point of departure (POD). This is especially interesting in regulatory chemical risk assessment.
Currently, the field of systems toxicology is explored by combining data from different omics field (e.g. transcriptomics, proteomics, metabolomics) to improve our understanding of the relationship between the different omics, chemical exposure, and toxicity, and to better understand the mechanism of toxicity/ MoA.
Table 2: Application areas of metabolomics in environmental toxicology.
Application area |
Description |
Mechanism of toxicity/ Mode of action (MoA) |
Using metabolomics to understand at the molecular level the pathways that are affected by exposure to environmental contaminants. Discovery of the mode of action of chemicals. In an adverse outcome pathway (AOP)Discovery metabolomics is used to identify the key events (KE), by linking chemical exposure at the molecular level to functional endpoints (e.g. reproduction, behaviour). |
Biomarker discovery |
Identification of metabolites that can be used as convenient (i.e., easy and inexpensive to measure) indicators of exposure or effect. |
Read-across |
In regulatory toxicology, metabolomics is used in read-across studies to provide information on the similarity of the responses between chemicals. This approach is useful to identify more environmentally toxic chemicals. |
Point of departure |
Metabolomics can be used in dose-response studies (benchmark dosing) to derive a point of departure (POD). This is especially interesting in regulatory chemical risk assessment. This application is currently not used yet. |
Systems toxicology |
Combination approach of different omics (e.g. transcriptomics, proteomics, metabolomics) to improve our understanding of the relationship between the different omics and chemical exposure, and to better understand the mechanism of toxicity/ MoA. |
As an illustration of the mechanism of toxicity/mode of action application, Bundy et al. (2008) used NMR-based metabolomics to study earthworms (Lumbricus rubellus) exposed to various concentrations of copper in soil (0, 10, 40, 160, 480 mg copper / kg soil). They performed both transcriptomic and metabolomics studies. Both polar (sugars, amino acid, etc.) and apolar (lipids) metabolites were analysed, and fold changes relative to the control group were determined. For example, differences in the fold changes of lipid metabolites (e.g. fatty acids, triacylglycerol) as a function of copper concentration are shown as a “heatmap” in Figure 3A. Clearly the highest dose group (480 mg/kg) has a very different lipid metabolite pattern than the other groups. The polar metabolite data was analysed using principal component analysis (PCA) , a multivariate statistical tool that reduces the number of dimensions of the data. The PCA score plot shown in Figure 3B reveals that the largest differences in metabolite profiles exist between: the control and low dose (10 mg Cu/kg) groups, the 40 mg Cu/kg and 160 mg Cu/kg groups, and the highest dose (480 mg Cu/kg) group (Figure 3B). These separations indicate that the metabolite patterns in these groups were different as a result of the different copper exposures. Some of the metabolites were up- and some were down-regulated due to the copper exposure (two examples given in Figures 3c and 3D). The metabolite data were also combined with gene expression data in a systems toxicology application. This combined analysis showed that the copper exposures led to disruption of energy metabolism, particularly with regard to effects on the mitochondria and oxidative phosphorylation. Bundy et al. associated this effect on energy metabolism with a reduced growth rate of the earthworms. This study effectively showed that metabolomics can be used to understand the metabolite pathways that are affected by copper exposure and are closely linked to phenotypic changes (i.e., reduced growth rate). The transcriptome data collected simultaneously were in good accordance with the metabolome patterns, supporting Bundy et al.’s hypothesis that simultaneous measurement of the transcriptomes and metabolome can be used to validate the findings of both approaches, and in turn the value of “systems toxicology”.
Figure 3: Example of metabolite analysis with NMR to understand the mechanism of toxicity of copper to earthworms (Bundy et al., 2008). A: Heatmap, showing the fold changes of lipid metabolites at different exposure concentrations of copper (10, 40, 160, 480 mg/kg copper in soil) and controls. B: Principal component analysis (PCA) of the polar metabolite patterns of the exposure groups. The higher dose group (480 mg/kg soil) is separate from the medium dose (40 mg Cu/kg and 160 mg Cu/kg) groups and the control and the lowest dose groups (0 mg Cu/kg and 10 mg Cu/kg soil) indicating that the metabolite patterns in these groups are different and are affected by the copper exposure. C: Down and upregulation of lipophilic amino acids (blue: aliphatics, red: aromatics). D: Upregulation of cell-membrane-related metabolites (black = betaine, glycine, HEFS, phosphoethanolamine, red: myo-inositol, scyllo-inositol). Redrawn from Bundy et al. (2008) by Wilma IJzerman.
Challenges in metabolomics
Several challenges currently exist in the field of metabolomics. From a biological perspective, metabolism is a dynamic process and therefore very time-sensitive. Taking samples at different time-points during development of an organism, or throughout a chemical exposure can result in quite different metabolite patterns. Sample handling and storage can also be challenging as some metabolites are very unstable during sample collection and sample treatment. From an analytical perspective, metabolites possess a wide range of physico-chemical properties and occur in highly varying concentrations such that capturing the widest portion of the metabolome requires analysis with more than one analytical technique. However, the largest challenge is arguably the identification of the chemical structure of unknown metabolites. Even with state-of-the-art analytical techniques only a fraction of the unknown metabolites can be confidently identified.
Conclusions
Metabolomics is a relative new field in toxicology, but is rapidly increasing our understanding of the biochemical pathways affected by exposure to environmental contaminants, and in turn their mechanisms of action. Linking the changed molecular pathways due to the contaminant exposure to phenotypical changes of the organisms is an area of great interest. Continual advances in state-of-the-art analytical tools for metabolite detection and identification will continue to this trend and expand the utility of environmental metabolomics for prioritizing contaminants. However, a number of challenges remain for the widespread use of metabolomics in regulatory toxicology. Fortunately, recent growth in international interest to address these challenges is underway, and is making great strides in a variety of applications.
References
Bundy, J.G., Sidhu, J.K., Rana, F., Spurgeon, D.J., Svendsen, C., Wren, J.F., Sturzenbaum, S.R., Morgan, A.J., Kille, P. (2008). ’Systems toxicology’ approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6(25), 1-21.
Bundy, J.G., Matthew P. Davey, M.P., Viant, M.R. (2009). Environmental metabolomics: a critical review and future perspectives. Metabolomics, 5, 3–21.
Johnson, C.H., Ivanisevic, J., Siuzdak, G. (2016). Metabolomics: beyond biomarkers and towards mechanisms. Nature Reviews, Molecular and Cellular Biology 17, 451-459.