Author: Michiel Kraak
Reviewer: Kees van Gestel
Learning objectives:
You should be able to
· define stress and multistress.
· explain the ecological relevance of multistress scenarios.
Keywords: Stress, multistress, chemical-abiotic interactions, chemical-biotic interactions
Introduction
In contaminated environments, organisms are generally exposed to a wide variety of toxicants under variable and sub-optimal conditions. To gain ecological realism, multistress scenarios should thus be considered, but these are, however, understudied.
Definitions
Stress is defined as an environmental change that affects the fitness and ecological functioning of species (i.e., growth, reproduction, behaviour), ultimately leading to changes in community structure and ecosystem functioning. Multistress is subsequently defined as a situation in which an organism is exposed both to a toxicant and to stressful environmental conditions. This includes chemical-abiotic interactions, chemical-biotic interactions as well as combinations of these. Common abiotic stressors are for instance pH, drought, salinity and above all temperature, while common biotic stressors include predation, competition, population density and food shortage. Experiments on such stressors typically study, for instance, the effect of increasing temperature or the influence of food availability on the toxicity of compounds.
The present definition of multistress thus excludes mixture toxicity (see section on Mixture toxicity) as well as situations in which organisms are confronted with several suboptimal (a)biotic environmental variables jointly without being exposed to toxicants. The next chapters deal with chemical-abiotic and chemical-biotic interactions and with practical issues related with the performance of multistress experiments, respectively.