3.7.1. Chemical and photochemical degradation processes

Authors: John Parsons

Reviewers:  Steven Droge, Kristopher McNeill

 

Leaning objectives:

You should be able to:

 

Keywords: Environmental degradation reactions, Hydrolysis, Reduction, Dehalogenation, Oxidation, Photodegradation

 

Introduction

Transformation of organic chemicals in the environment can occur by a variety of reactions. These may be purely chemical reactions, such as hydrolyses or redox reactions, photochemical reactions with the direct or indirect involvement of light, or biochemical reactions. Such transformations can change the biological activity (toxicity) of a molecule; it can change the physico-chemical properties and thus change its environmental partitioning processes; it can change its bioavailability, for example facilitating biodegradation; or it may contribute to the complete removal (mineralization) of the chemical from the environment. In many cases, chemicals may be removed by combinations of these different processes and it is sometimes difficult to unequivocally identify the contributions of the different mechanisms. Indeed, combinations of different mechanisms are sometimes important, for example in cases where microbial activity is responsible for creating conditions that favour chemical reactions. Here we will focus on two types of reactions: Abiotic (dark) reactions and photochemical reactions. Biodegradation reactions are covered elsewhere (see section on Biodegradation).

 

Chemical degradation

Hydrolytic reactions are important chemical reactions removing organic contaminants and are particularly important for chemicals containing acid derivatives as functional groups. Common examples of such chemicals are pesticides of the organophosphate and carbamate classes such as parathion, diazinon, aldicarb and carbaryl. Organophosphate chemicals are also used as flame retardants and are widely distributed in the environment. Some examples of hydrolysis reactions are shown in Figure 1.

 

 

Figure 1 Examples of hydrolyses of esters and carbamates (redrawn after Van Leeuwen and Vermeire, 2007).

 

As the name suggests, hydrolysis reactions involve using water (hydro-) to break (-lysis) a bond. Hydrolyses are reactions with water to produce an acid and either an alcohol or amine as products. Hydrolyses can be catalysed by either OH- or H+ ions and their rates are therefore pH dependent. Some examples of pH-dependent ester hydrolysis reactions are shown in Figure 2.

Halogenated organic molecules may also be hydrolysed to form alcohols (releasing the halogen as a halide ion). The rates of these reactions vary strongly depending on the structure of the organohalogen molecule and the halogen substituent (with Br and I being substituted more rapidly than Cl, and much more rapidly than F) and in general the rates of these reactions are too slow to be of more than minor importance except for tertiary organohalogens and secondary organohalogens with Br and I (Schwarzenbach et al. 2017).

 

Figure 2. Examples of pH dependent ester hydrolysis reactions (Schwarzenbach et al. 2017). Note that the y-axis is half-life (on a logarithmic scale), meaning high values correspond to slow reactions. Redrawn by Wilma Ijzerman.

 

In some cases, other substitution reactions not involving water as reactant may be important. Some examples include Cl in seawater converting CH3I to CH3Cl and reaction of thiols with alkyl bromines in anaerobic groundwater and sediment porewater under sulfate-reducing conditions (Schwarzenbach et al. 2017)

Redox (reduction and oxidation) reactions are another important reaction class involved in the degradation of organic chemicals. In the presence of oxygen, the oxidation of organic chemicals is thermodynamically favourable but occurs at insignificant rates unless oxygen is activated in the form of oxygen radicals or peroxides (following light absorption for example, see below) or if the reaction is catalysed by transition metals or transition metal-containing enzymes (see the sections on Biodegradation and Xenobiotic metabolism and defence).

Reduction reactions are important redox reactions for environmental contaminants in anaerobic environments such as sediment and groundwater aquifers. Under these conditions, organic chemicals containing reducible functional groups such as carboxylic acids and nitro groups undergo reduction reactions (Table 1).

 

Table 1: Examples of chemical redox reactions that may occur in the environment (adapted from Schwarzenbach et al. 2017)

 

Organohalogens may also undergo reductions reactions with hydrogen where halogen substituents are replaced by hydrogen. These reactions are referred to as reductive dehalogenations and electron donors in these reaction can be inorganic oxidation reactions (such as the oxidation of Fe(II) minerals) or biochemical oxidation of organic chemicals. In fact, biological processes are also involved indirectly as the environmental redox conditions which determine which redox reactions can take place are in turn determined by microbial activity. Natural organic matter is often involved in environmental redox reactions as a catalyst enhancing electron transfer (Schwarzenbach et al. 2017). As an example, Figure 3 shows reductive dehalogenation reactions of hexachlorobenzene.

 

Figure 3. Reductive dehalogenation of hexachlorobenzene to less hydrophobic dechlorinated products (redrawn after Van Leeuwen and Vermeire, 2007).

 

Photodegradation

Sunlight is an important source of energy to initiate chemical reactions and photochemical reactions are particularly important in the atmosphere. Aromatic compounds and other chemicals containing unsaturated bonds that are able to absorb light in the frequency range available in sunlight become exited (energized) and this can lead to chemical reactions. These reactions lead to cleavage of bonds between carbon atoms and other atoms such as halogens to produce radical species. These radicals are highly reactive and react further to remove hydrogen or OH radicals from water to produce C-H or C-OH bonds or may react with themselves to produce larger molecules. Well known examples of atmospheric photochemical stratospheric reactions of CFCs that have had a negative impact on the so-called ozone layer and photochemical oxidations of hydrocarbons that are involved in the generation of smog.

In the aquatic environment, light penetration is sufficient to lead to photochemical reactions of organic chemicals at the water surface or in the top layer of clear water. The presence of particles in a waterbody reduces light intensity through light scattering as does dissolved organic matter through light absorption. Photodegradation contributes significantly to removing oil spills and appears to favour the degradation of longer chain alkanes compared to the preferential attack of linear and small alkanes by biodegradation (Garrett et al., 1998). Cycloalkanes and aromatic hydrocarbons are also removed by photodegradation (D’Auria et al., 2009). There is comparatively little known about the role photodegradation of other organic pollutants in the marine environment although there is, for example, evidence that triclosan is removed by photolysis in the German Bight area of the North Sea (Xie et al., 2008). In the soil environment, there is some evidence that photodegradation may contribute to the removal of a variety of organic chemicals such as pesticides and chemicals present in sewage sludge that is used as a soil amendment but the significance of this process is unclear. Similarly, chemicals that have accumulated in ice, for example as a result of long range transport to polar regions, also seem to be susceptible to photodegradation. Some examples of photodegradation reactions are shown in Figure 4.

 

 

Figure 4. Some examples of photodegradation reactions (redrawn after Van Leeuwen and Vermeire, 2007). (Steven Droge 2019)

 

An important category of photochemical reactions are indirect reactions in which organic chemicals react with photochemically produced radicals, in particular with reactive oxygen species such as OH radicals, ozone and singlet oxygen. These reactive species are present at very low concentrations but are so reactive that under certain conditions they can contribute significantly to the removal of organic chemicals. Products of these reactions are a variety of oxidized derivatives which are themselves radicals and therefore react further. OH radicals are the most important of these photochemically produced species and can react with organic chemicals by removing hydrogen radicals, reacting with unsaturated bonds in alkenes, aromatics etc. to produce hydroxylated products. In water, natural organic matter absorbs light and can participate in indirect photodegradation reactions. Other constituents in surface water, such as nitrogen oxides and iron complexes may also be involved in indirect photodegradation reactions.

 

References

Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M. (2017). Environmental Organic Chemistry, Third Edition, Wiley, ISBN 978-1-118-76723-8

van Leeuwen, C.J., Vermeire, T.G. (2007). Risk Assessment of Chemicals: An Introduction (2nd ed.), Springer, ISBN 978-1-4020-6101-1